
首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:110KV交联聚乙烯电缆交流耐压试验标准装置(电科院推荐)
ZSBP-54KVA/54KV变频串联谐振成套试验装置
10kV/300mm2的电缆,长度1km,电容量≤0.378uF试验频率为30-300Hz,试验电压22kV。
35kV/300mm2的电缆,长度0.5km,电容量≤0.01uF试验频率为30-300Hz,试验电压52kV。
参考标准:DL/T 849.6-2016,DL/T 474.4-2018
变频串联谐振耐压试验装置:ZSBP系列变频串联谐振耐压试验装置,中试控股采用调节电源频率的方式,使得电抗器与被试电容器实现谐振,从而在被试品上获得高电压大电流,因其所需电源功率小、设备重量轻体积小在国内外得到了广泛应用,是当前高电压试验的新方法和潮流。
交流耐压试验是电力设备绝缘强度有效和直接的方法,是电力预防性试验的一项重要内容。 此外,由于交流耐压试验电压一般比运行电压高,因此通过试验后,设备有较大的安全裕度,因此交流耐压试验是电力设备安全运行的一种重要手段。一般变频串联谐振试验装置来进行交流耐压试验。
试验电压的确定交流耐压试验中,关键的问题就是正确选择试验电压的数值,一方面要求能保证绝缘水平,另一方面要考虑因试验电压过高而引起的绝缘劣化。
ZSBP-54KVA/54KV变频串联谐振成套试验装置系统配置及具体参数
1、变频控制电源6KW 1台
a) 变频控制电源采用高压耐压试验专用变频电源,采用一体化设计,控制电源本体具备调频、调压、控制、保护等功能。
b) 额定输出容量: 6KW
c) 工作电源: 交流220V、50Hz 。
d) 输出电压: 0~250V可调。
e) 输出电压不稳定度≤0.05%
f) 最大输出电流: 24A
g) 输出波形:正弦波, 波形畸变率:≤0.5%
h) 频率调节范围: 30~300Hz
频率调节分辨率: 0.001 Hz
i) 连续运行时间: 大于1小时
j) 噪声水平:≤ 60dB
在通过串联谐振试验找到谐振点并升压到试验电压时,如果出现试品耐压不合格或者现场环境没发生大的变化等现象,试验是不会产生过电压保护或者其他故障。但是由于电网电压不是恒定的,电源输入电压是波动的,那么高压输出也是具有一定的波动性,此种情况可能会造成电压波峰出现过电压保护。如果出现电源电压波动,可以调整仪器的过电压保护,提高过电压保护设置,我们一般要求过电压保护设置到电压保护的1.1倍,此时设置到1.2倍基本没有问题。
以上为较简单的问题,但是由于电压波动造成的过电压在设置好过电压保护的情况下是很难出现的。一般变频串联谐振试验装置的过电压都会出现在仪器的扫频阶段,也就是找到谐振点的过程中。使用过的人员都知道,变频串联谐振试验装置找谐振点的过程中,其电压与频率的呈现抛物线一样。系统默认找到高电压,也就是抛物线的顶点作为谐振点。由于谐振原理中理论可以将低压电压谐振到80倍(由于品质因数等关系一般不超过30倍),变频串联谐振试验装置扫频时需要的电压一般为20-50V,通过激励变后的电压一般为几百伏。通过以上原理我们发现,如果我们需要的试品试验电压小于系统谐振时谐振点时的电压,系统可能在自动寻找谐振点时就出现过电压保护,此时整个变频串联谐振试验装置是无法及时耐压,试验也是无法完成的。
检验
1、变频电源
1)绝缘电阻测试
2)耐压试验:2000V,1分钟
3)负载试验:在满负荷下,各器件的温升不大于45K 。
2、励磁变压器
1)直流电阻测量
2)变比测量
3)空载电流及空载损耗
4)短路阻抗和负载损耗
5)绝缘电阻测试
6)温升试验:额定容量下运行60min,温升不大于65K
3、电抗器试验
1)直流电阻测量
2)电感量测量
3)交流耐压试验
温升试验:额定容量下运行60min,温升不大于65K
4、中试控股成套装置试验
(1)耐压试验:1.1额定电压下,耐压1min;
(2)短路试验:电压为0.5U,0.8U,1.0U的条件下,将高压输出突发短路3次,保护装置可靠动作,各单元完好。
(3)噪音小于60dB;
结构: 采用干式结构,绝缘耐热等级H级,满足干式变压器国家规范要求;高﹑低压绕组间和铁芯设静电屏蔽,既作为励磁变,又是隔离变;内置过电压保护,防止击穿反击。
采用了调节电源的频率的方式使得电抗器与被试电容器实现谐振,在被试品上获得高电压大电流,是当前高电压试验的一种新的方法和潮流,在国内外已经得到广泛的应用。
采用了专用的SPWM数字式波形发生芯片,频率分辨率16位,在20~300Hz时频率细度可达0.1Hz;采用了正交非同步固定式载波调制方式,确保在整个频率区间内输出波形良好;功率部分采用了先进的IPM模块,在小重量下确保仪器稳定和安全。
(1)变压器外观检查,如外壳有无明显凹凸箱体焊缝是否渗漏油,检查压力释放装置动作情况,气体继电器是否动作或发出信号、是否集有可燃性气体。对仍在运行的变压器要注意辨别发出的声音是否为连续、均匀,轻微的“嗡嗡”声,若声音不均匀或有特殊声音,则需要进一步处理。
(2)对变压器油样进行油气相色谱分析,通过对油中溶解气体成分及含量的分析,根据不同的成分(如局部放电时会有乙炔、氢气,较高温度过热时总会有乙烯)及含量可判断变压器存在的潜伏性故障及性质。
(3)进行全面电气试验,排除绕组绝缘损坏的可能变压器绕组的直流电阻三相数值基本平衡,测量直流电阻可以方便有效地考核绕组纵绝缘和回路的连接情况,能发现出口短路引起的匝(饼)间短路、绕组断股等故障,可判断变压器是否遭受了严重的冲击破坏,因此直流电阻测量是发现绕组是否损坏的最有效手段。
(4)进行绕组的介质损耗和电容量测量,当变压器发生局部机械变形时,其绕组间以及对铁芯和外壳的相对位置会发生变化,其电容量也将随之变化,虽然DL/T5961996《电力设备预防性试验规程》从绝缘的角度对介质损耗值做了规定,但严重的绕组变形会引起电容量的明显变化,所以,在检查承受短路冲击后的变压器是否发生绕组变形时,被测电容值与历史数据比较也非常重要,当变化值超过10%时需要引起注意。
(5)进行变压器绕组变形试验测量,以判定电力变压器绕组是否变形。若试验时发现频响特性曲线的相关系数小于0.6,应立即退出运行。
(6)低电压短路阻抗试验:短路阻抗法是判断变压器绕组变形的传统方法,该试验方法相对简单,对试验设备要求低,有出厂和历次试验数据相比较,现场实施非常简便,但其灵敏度低于频率响应法,适用于变形比较严重的绕组。当绕组的三相短路阻抗值差超过3%时,应引起注意。
(7)空载损耗和空载电流试验:变压器经受出口短路电流冲击,当出现线圈匝间短路或涉及铁芯绝缘时,会引起变压器的励磁电流增加和空载损耗增大,与历次试验数据比较,空载损耗增加10%时就应引起注意
(8)继电保护及自动装置的动作情况检查:变压器经受出口短路电流冲击而跳闸,一般是通过差动保护、过电流保护和气体保护发出动作指令,要注意记录故障电流的大小、故障切除时间,检查保护装置的动作行为是否符合整定值要求。
(9)变压器经出口短路后,可进行试验项目通常有绝缘电阻测量、变压比试验、油或纸绝缘材料的分析化验等,所有试验项目应严格执行DL/T5961996《电力设备预防性试验规程》的相关标准,发现试验结果异常要引起注意。变频串联谐振试验装置系统,人性化的人机交互:
试验参数设置、试验控制、试验结果等同屏显示,直观清晰,并具有自动计时及操作提示功能;全触控屏操作及显示,变频串联谐振试验装置具备试验数据保存和查询功能。
rlc串联谐振电路中为什么要保持输出电压恒定
首先,提出rlc串联谐振电路中为什么要保持输出电压恒定这个问题
首先LC串联谐振,电路的整体阻抗为0欧,那么RLC串联谐振的整体阻抗为R的阻值。
这时候电路的电流等于U/R。而由于串联,流过 阻 容 感(RLC)的电流式相同的,那么电感上的电压为感抗乘电流,电容上的电压幅值和电感上相同。
我们把R减小,那么电流就会加大,电阻为0的话,理论制上电流等于无穷大,那么电感电容上的电压也都分别是无穷大。
换句话说,电阻值的大小直接影响到电感上输出电压的高低。减小电阻值很容易得到高电压,这是很危险的。
所以我们要控制输出电压大小作为保护。
作为一种相对而言比较基础的、应用也非常广泛的转换器,串联谐振型的DC-DC转换器在工作中的优点是电路拓扑结构比较简单,它的关断损耗和开关损耗比较小,且没有输出滤波电感,因此复变整流二极管上的电压应力也比较小。除此之外,该类型的变换器电路循环电流比较低,能量循环也相对较低一些。
但串联谐振变换器在作为电源来使用时也有一些自身的缺点。一个比较大的缺陷就是它的选择性比较差,由于谐振与负载串联,开关频率直接受到负载电路的影响,因此在轻载或空载时输出电压无法调整。除此之外,串联谐振变换器的输出直流滤波电容必须承受较高的纹波电流、而当输出电压增加时,开关频率必须提高以维持输出电压的稳定,谐振网络的能力将增加且产生较高的关断电流,因此不适合在高输入电压下应用。
串联谐振是电压最高还是电流最大及为什么要保持输出电压恒定
在电阻、电感及电容百所组成的串联电路内,当容抗XC与感抗XL相等时,即XC=XL,电路中的度电压U与电流I的相位相同,电路呈现纯电阻性,这就是回串联谐振。当电路发生串联谐振时电路的阻抗Z=√R2 (XC-XL)2=R,电路中总阻答抗最小,电流达到最大值。
首先LC串联谐度振,电路的整体阻抗为0欧,那么RLC串联谐振的整体阻抗为R的阻值。
这时候电问路的电流等于U/R。而由于串联,流过 阻 容 感(RLC)的电流式相同的,那么电感上答的电压为感抗乘电流,电容上的电压幅值和电感上相同。
我们把R减小,那么电流就会加大,回电阻为0的话,理论上电流等于无穷大,那么电感电容上的电压答也都分别是无穷大。
换句话说,电阻值的大小直接影响到电感上输出电压的高低。减小电阻值很容易得到高电压,这是很危险的。
所以我们要控制输出电压大小作为保护。
串联谐振式逆变器和并联谐振式逆变器的直流侧分别是电压源和电流源。因此,也称为电压型逆变器介一一和电流型逆变器、,两者之存在着对偶性。下面对两者应用过程中的主要差别进行比较分析。串联谐振式逆变器短路保护较为困难,并联谐振不易进行开路保护。
串联谐振式逆变器采用电压源供电,在输入端并接有大的滤波电容,在逆变器发生短路故障时,由于电容器上电压不能突变,瞬时放电电流将会很大,极易造成功率管的过流损坏,此时必在功率器件的允许短路时间内采取保护措施,可以通过研制合理有效的保护电路予以克服。相反,并联谐振式逆变器采用电流源供电,逆变器输入端末端串接有一大滤波电感,在逆变器发生短路故障时,短路电流的上升将会受到此滤波电感的抑制,功率器件的短路保护就相对比较容易实现。但是,为了能使电感上的能量及时释放,必须时刻保持电感通路,当逆变器负载开路时,就会在电感上感生很大的电动势,并加在开关管上,极易造成开关管的过压击穿,负载开路保护相对困难。
由于串联谐振逆变器输出电压高,电流小,对槽路布局要求较低,感应加热线圈与逆变电源的距离远时对输出功率的影响很小,当采用同轴电缆或将来回线绞接在一起铺设时影响则几乎可以不计。并联逆变器则由于电压低,电流大而对槽路布线要求很高。感应加热线圈与逆变电源尤其是谐振电容器的距离应尽量靠近,否则两者之间的引线的分布电感会改变负载电路的结构,使逆变器工作受到很大影响。
综合以上几点的对比情况,在需要频繁起停,适合复杂工况的超音频感应加热应用中,选择串联逆变器结构更为合适。同时,为了改善开关状态,防止开通时有过大的尖峰电流,实现开关管的,需要使负载工作于感性状态,即开关频率略大于谐振频率。
快速跳转