首页 > 新闻中心 > 高压技术<

高压技术
35kV电力电缆试验装置(电科院推荐)
时间:2023-05-06

中试控股技术研究院鲁工为您讲解:35kV电力电缆试验装置(电科院推荐)

ZSBP-54KVA/54KV变频串联谐振成套试验装置

10kV/300mm2的电缆,长度1km,电容量≤0.378uF试验频率为30-300Hz,试验电压22kV。
35kV/300mm2的电缆,长度0.5km,电容量≤0.01uF试验频率为30-300Hz,试验电压52kV。

参考标准:DL/T 849.6-2016,DL/T 474.4-2018

变频串联谐振耐压试验装置ZSBP系列变频串联谐振耐压试验装置,中试控股采用调节电源频率的方式,使得电抗器与被试电容器实现谐振,从而在被试品上获得高电压大电流,因其所需电源功率小、设备重量轻体积小在国内外得到了广泛应用,是当前高电压试验的新方法和潮流。

交流耐压试验是电力设备绝缘强度有效和直接的方法,是电力预防性试验的一项重要内容。 此外,由于交流耐压试验电压一般比运行电压高,因此通过试验后,设备有较大的安全裕度,因此交流耐压试验是电力设备安全运行的一种重要手段。一般变频串联谐振试验装置来进行交流耐压试验。  
试验电压的确定交流耐压试验中,关键的问题就是正确选择试验电压的数值,一方面要求能保证绝缘水平,另一方面要考虑因试验电压过高而引起的绝缘劣化。

中试控股始于1986年 ▪ 30多年专业制造 ▪ 国家电网.南方电网.内蒙电网.入围合格供应商

ZSBP-54KVA/54KV变频串联谐振成套试验装置系统配置及具体参数
1、变频控制电源6KW                1台
a) 变频控制电源采用高压耐压试验专用变频电源,采用一体化设计,控制电源本体具备调频、调压、控制、保护等功能。
b) 额定输出容量:  6KW
c) 工作电源:      交流220V、50Hz 。
d) 输出电压:      0~250V可调。
e) 输出电压不稳定度≤0.05%
f) 最大输出电流:  24A
g) 输出波形:正弦波,      波形畸变率:≤0.5%
h) 频率调节范围:  30~300Hz
频率调节分辨率: 0.001 Hz
i) 连续运行时间: 大于1小时
j) 噪声水平:≤ 60dB

在通过串联谐振试验找到谐振点并升压到试验电压时,如果出现试品耐压不合格或者现场环境没发生大的变化等现象,试验是不会产生过电压保护或者其他故障。但是由于电网电压不是恒定的,电源输入电压是波动的,那么高压输出也是具有一定的波动性,此种情况可能会造成电压波峰出现过电压保护。如果出现电源电压波动,可以调整仪器的过电压保护,提高过电压保护设置,我们一般要求过电压保护设置到电压保护的1.1倍,此时设置到1.2倍基本没有问题。 
以上为较简单的问题,但是由于电压波动造成的过电压在设置好过电压保护的情况下是很难出现的。一般变频串联谐振试验装置的过电压都会出现在仪器的扫频阶段,也就是找到谐振点的过程中。使用过的人员都知道,变频串联谐振试验装置找谐振点的过程中,其电压与频率的呈现抛物线一样。系统默认找到高电压,也就是抛物线的顶点作为谐振点。由于谐振原理中理论可以将低压电压谐振到80倍(由于品质因数等关系一般不超过30倍),变频串联谐振试验装置扫频时需要的电压一般为20-50V,通过激励变后的电压一般为几百伏。通过以上原理我们发现,如果我们需要的试品试验电压小于系统谐振时谐振点时的电压,系统可能在自动寻找谐振点时就出现过电压保护,此时整个变频串联谐振试验装置是无法及时耐压,试验也是无法完成的。 


检验

1、变频电源

1)绝缘电阻测试

2)耐压试验:2000V1分钟

3)负载试验:在满负荷下,各器件的温升不大于45K 

2、励磁变压器

1)直流电阻测量

  2)变比测量

  3)空载电流及空载损耗

  4)短路阻抗和负载损耗

  5)绝缘电阻测试

  6)温升试验:额定容量下运行60min,温升不大于65K

 3、电抗器试验

1)直流电阻测量

2)电感量测量

3)交流耐压试验

温升试验:额定容量下运行60min,温升不大于65K

4、中试控股成套装置试验

1耐压试验:1.1额定电压下,耐压1min

2短路试验:电压为0.5U0.8U1.0U的条件下,将高压输出突发短路3次,保护装置可靠动作,各单元完好。

3)噪音小于60dB


结构: 采用干式结构,绝缘耐热等级H级,满足干式变压器国家规范要求;高﹑低压绕组间和铁芯设静电屏蔽,既作为励磁变,又是隔离变;内置过电压保护,防止击穿反击。

采用了调节电源的频率的方式使得电抗器与被试电容器实现谐振,在被试品上获得高电压大电流,是当前高电压试验的一种新的方法和潮流,在国内外已经得到广泛的应用。
采用了专用的SPWM数字式波形发生芯片,频率分辨率16位,在20~300Hz时频率细度可达0.1Hz;采用了正交非同步固定式载波调制方式,确保在整个频率区间内输出波形良好;功率部分采用了先进的IPM模块,在小重量下确保仪器稳定和安全。

中试控股电力讲解变压器一旦承受近距离出口短路,不管是否引起跳闸,都要针对短路故障性质、短路电流大小,短路点距出口距离远近,继电保护及自动装置动作情况、油色谱分析等进行综合分析,判断绕组是否变形、绝缘是否损坏,以确定变压器能否继续运行。对跳闸的变压器还要测量其绕组直流电阻、绕组变形、空载损耗,以判定损坏程度,确定是否可以继续运行,制定修复方案,通常采用的判断方法有:


1)变压器外观检查,如外壳有无明显凹凸箱体焊缝是否渗漏油,检查压力释放装置动作情况,气体继电器是否动作或发出信号、是否集有可燃性气体。对仍在运行的变压器要注意辨别发出的声音是否为连续、均匀,轻微的“嗡嗡”声,若声音不均匀或有特殊声音,则需要进一步处理。

2)对变压器油样进行油气相色谱分析,通过对油中溶解气体成分及含量的分析,根据不同的成分(如局部放电时会有乙炔、氢气,较高温度过热时总会有乙烯)及含量可判断变压器存在的潜伏性故障及性质。

3)进行全面电气试验,排除绕组绝缘损坏的可能变压器绕组的直流电阻三相数值基本平衡,测量直流电阻可以方便有效地考核绕组纵绝缘和回路的连接情况,能发现出口短路引起的匝(饼)间短路、绕组断股等故障,可判断变压器是否遭受了严重的冲击破坏,因此直流电阻测量是发现绕组是否损坏的最有效手段。

4)进行绕组的介质损耗和电容量测量,当变压器发生局部机械变形时,其绕组间以及对铁芯和外壳的相对位置会发生变化,其电容量也将随之变化,虽然DL/T5961996《电力设备预防性试验规程》从绝缘的角度对介质损耗值做了规定,但严重的绕组变形会引起电容量的明显变化,所以,在检查承受短路冲击后的变压器是否发生绕组变形时,被测电容值与历史数据比较也非常重要,当变化值超过10%时需要引起注意。

5)进行变压器绕组变形试验测量,以判定电力变压器绕组是否变形。若试验时发现频响特性曲线的相关系数小于0.6,应立即退出运行。

6)低电压短路阻抗试验:短路阻抗法是判断变压器绕组变形的传统方法,该试验方法相对简单,对试验设备要求低,有出厂和历次试验数据相比较,现场实施非常简便,但其灵敏度低于频率响应法,适用于变形比较严重的绕组。当绕组的三相短路阻抗值差超过3%时,应引起注意。

7)空载损耗和空载电流试验:变压器经受出口短路电流冲击,当出现线圈匝间短路或涉及铁芯绝缘时,会引起变压器的励磁电流增加和空载损耗增大,与历次试验数据比较,空载损耗增加10%时就应引起注意

8)继电保护及自动装置的动作情况检查:变压器经受出口短路电流冲击而跳闸,一般是通过差动保护、过电流保护和气体保护发出动作指令,要注意记录故障电流的大小、故障切除时间,检查保护装置的动作行为是否符合整定值要求。

9)变压器经出口短路后,可进行试验项目通常有绝缘电阻测量、变压比试验、油或纸绝缘材料的分析化验等,所有试验项目应严格执行DL/T5961996《电力设备预防性试验规程》的相关标准,发现试验结果异常要引起注意。电容器充电电源发展概况


  与传统的高压直流电源不同的是,在脉冲功率领域,高压电容需要在充电到预设 值后瞬时放电,产生很大的脉冲功率,然后再充电,重复上述过程,电容电压变化

  电容器充电技术有多种不同的分类方式,比如,按照工作频率分,有工频充电和高频充电,按照充电方式分,有恒压充电和恒流充电。目前,主要有以下三种充电方式:带限流电阻的传统高压直流充电,工频LC谐振式充电电源以及高频开关变换器充电电源。   

  (1)带限流电阻的高压直流充电电源 其充电原理图如图 1.2 所示,在充电阶段,高压直流电源经限流电阻对电容器充电 直至电容电压与电源电压相等;在放电阶段,电容器对负载瞬间放电,发出脉冲功率, 限流电阻起到隔离高压直流电源和负载的作用。这种充电方式非常简单而且可靠,成 本低廉,但是充电效率很低,最高只能到 50%,而且充电过程非线性,前期充电电流 非常大,但是后期却太慢,只能适用于低重复频率的场合。

  2)工频 LC 谐振式充电电源 其充电原理图如图 1.3 所示,基本原理是由 LC 构成的谐振系统,当  w2 LC =1时,充电电源的电流达到一个恒定值,实现对充电电容线性充电,因此充电速度较快。但 是缺点也很明显,因为是工频充电,充电精度和充电稳定性不可能太高,而且工频变 压器体积庞大、笨重,不利于实现小型化、集约化和模块化。

串联谐振直流电源原理分析

 串联谐振充电电源原理框图如图 2.1 所示,包括全桥逆变谐振升压、不控整流、采样反馈和保护控制系统等部分,高频逆变桥将输入的直流信号转化为高频交流信号经高频变压器升压,输出电压经不控整流桥后给大电容充电。为了实现充电可控和幅值可调,增加了采样反馈系统和保护控制系统。下面将对主电路工作过程进行理论上的分析推导。

高频变压器分布参数的影响研究

  高频变压器是工作频率在中频(10kHz)以上的电源变压器,主要应用场合是在高 频开关电源中进行逆变桥输出升压。按工作频率的大小,可以分为以下几个档次: 10kHz 50kHz - 50kHz 100kHz - 100kHz 500kHz 500kHz 1MHz 1MHz以上。 高频变压器与普通变压器的区别一般有以下两种: 1)输入电压是交流方波而不是正弦波,变压器原方绕组中电流波形也是非正弦 波。 2)由于变压器的工作频率较高,最高可能会达到几十万赫兹。在确定磁心材料 及进行损耗计算时必须考虑磁芯中高次谐波的影响以及能满足高频工作的需要。

  通常,为了简化分析过程,我们会忽略高频变压器的励磁电感和漏感。事实上, 分布参数是不能忽略的,而且随着开关频率的提高,分布参数的影响会越来越严重。 而其中,对高频谐振充电电源影响最大的是分布电容,漏感可以作为谐振元件参与谐振过程。

为何变频串联谐振装置能够找到绝缘弱点|

在高压试验中,变频串联谐振试验成套装置是很好的选这是因频串联谐振试验成套装置有许多学生优点。例如,其分体式结构优化设计和小容量变频电源使串联谐振体积更小、更轻,易于在测试通过现场使用移动,并且我们可以同时根据实际测试的具体工作要求企业灵活地改变自己测试实验装置。更重要的优点是变频串联谐振试验成套装置是否能够实现快速有效地研究发现这些设备的绝缘弱点。那么他们为什么串联谐振能有效地提高发现绝缘薄弱环节呢|

这是因为变频串联谐振试验成套装置通过谐振电抗器与被测产品的电容串联,产生谐振,得到试验所需的大电流,高压,再通过变频电源的输出频率使电路串联谐振。 此时,正是由于电路的谐振,使得变频电源中较小的输出电压能够在被测产品上产生较高的测试电压,并联谐振或测试变压器进行电压测试。 与两者相比,短路电流是击穿电流的数百倍。

这是因为独特的串联谐振试验理论和针对性,串联谐振的专业技术设计,能够快速,有效地检测出被测产品的绝缘缺陷,以帮助电力职工有效地完成测试压力测试产品,完善的测试和工作效率。

串联谐振分压器的作用及在谐振时电抗等于多少

第一,能够发现社会中危险的部位。因为每一个设备虽然说在使用时有着非常高的效率,但是时间一长或多或少都会有相应的问题,比如说电压不稳定,电阻不稳定,这些问题如果没有得到比较好的解决,长时间之后就会成为一种安全隐患,一旦发的话就会给工厂给工人带去非常大的伤害。

但是如果在了解设备的电压电阻问题时,就可以通过串联谐振装置增压器,对社会做一个耐压实验,能够从耐压实验中了解该设备的电压如何?该设备所存在的问题集中在哪个方面,也能够及时的将其解决掉,总比在什么都不清楚的情况下就去选择一种解决方案,这种做法是非常盲目的,也是非常不可取的,只是浪费时间而已。

第二,串联谐振分压器的实际作用也包括它能够获得更多的电压,因为在无线电工程中,它的电压是非常低,自然保证不了整个信号的传输非常快,但是如果在使用时能够通过串联谐振分压器对其进行检测的话,也能够获得更大的电压,能够保证整个系统效率比较高,而且能够加强整个信号的传输力度。

变频串联谐振主要由变频电源、励磁变压器、电抗器和电容分压器组成。变频串联谐振试验装置采用多级叠加的方式,多台电抗器可并联、串联使用,分压器既用来测量试验电压,也可以作为小电容量试品的补偿电容,使得谐振频率可以在30300Hz范围内完成多种电力设备的交流耐压试验。用于测量被试品上的谐振电压,并作过压保护信号;调频功率输出经激励变压器耦合给串联谐振回路,提供串联谐振的激励功率。

变频串联谐振试验装置是运用串联谐振原理,利用励磁变压器激发串联谐振回路,调节变频控制器的输出频率,使回路电感L和试品C串联谐振,谐振电压回即为加到试品上电压。

 

 

 

 

 

 

 

 

销售热线

  • 400-046-1993全国统一服务热线
  • 销售热线:027-83621138
  • 售后专线:027-83982728
  • 在线QQ咨询: 149650365      
  • 联系我们

 

增值服务

  • 三年质保,一年包换,三个月试用

 

 

 

 


 

版权所有:湖北中试高测电气控股有限公司 鄂TCP备12007755号