
首页 > 新闻中心 > 电力技术<
35KV31500kVA变压器耐压测试仪
ZSBP-44kVA/22kV变频串联谐振试验装置技术指标
1.额定电压:
22kV---满足10kV电缆的交流耐压试验;工作频率:30-300Hz,试验电压≤22kV,试验时间5min;
2.输出电压波形畸变率:<1.0%
3.允许连续工作时间:额定条件下一次性工作60分钟;
4.装置自身品质因数:Q>50
5. GIS,开关等试验满负荷时品质因数:Q>20(与负载相关)
6.输入电源:三相380V或单相220V
7.频率调节范围:30Hz~300Hz
8.系统测量精度:1.5%
9.装置具有过压、过流、零位启动等保护功能
三、设备遵循标准
《电气装置安装工程电气设备交接试验标准》 GB50150-2016
《电力设备预防性试验规程》 DL/T596-1996
《高压谐振试验装置》 DL/T 849.6—2004
《电抗器》 GB10229.88
《耦合电容器和电容分压器》 IEC358(1990)
《电力变压器》 GB1094.5-2003
《外壳防护等级》 GB1094.1-GB1094.6-96
《高电压试验技术》 GB/T16927.1~2-1997
四、被试品对象及试验要求
1、10kV/300mm2电缆长度1km的交流耐压试验,电容量≤0.3755uF,试验频率30-300Hz,试验电压22kV,试验时间5min。
五、35KV31500kVA变压器耐压测试仪装置主要技术参数及功能
1)额定容量:44kVA;
2)输入电源:单相220或三相380V电压,频率为50Hz;
3)额定电压:22kV
4)额定电流:2A
5)工作频率:30-300Hz;
6)装置输出波形:正弦波
7)波形畸变率:输出电压波形畸变率≤1%;
8)工作时间:额定负载下允许连续5min;过压1.1倍1分钟;
9)温 升:额定负载下连续运行5min后温升≤65K;
10)品质因素:装置自身Q≥30(f=45Hz);
11)保护功能: 对被试品具有过流、过压及试品闪络保护(详见变频电源部分);
12)测量精度:系统有效值1.5级;
六、工作环境
环境温度:-10℃–50℃;
相对湿度:≤90%RH;
海拔高度: ≤1000米;
七、装置容量确定
装置容量定为44kVA/22kV,分1节电抗器,电抗器单节为44kVA/22kV/2A,使用电抗器能满足上述被试品的试验要求。
八、试验时设备使用关系列表
九、系统配置及其参数
1. 激励变压器JLB-3kVA/1.2kV/0.4kV 1台
a) 额定容量:3kVA;
b) 输入电压:0-400V,单相;
c) 输出电压:1.2KV
d) 结 构:干式;
2. 变频电源HZBP-3kW/220/380V 1台
a) 额定输出容量:3kW
b) 工作电源: 220/380±10%V(单/三相),工频
c) 输出电压:0 –400V,单相
d) 额定输入电流:7.5A
e) 额定输出电流:7.5A
f) 电压分辨率: 0.01kV
g) 电压测量精度:1.5%
h) 频率调节范围:30 – 300Hz
i) 频率调节分辨率:≤0.1Hz
j) 频率稳定度: 0.1%
k) 运 行 时 间:额定容量下连续60min
l) 额定容量下连续运行60min元器件最高温度≤65K;
m) 噪 声 水 平:≤50dB
n) 可实现以下功能:
1)变频电源的放置为纵向和横向,特别适合现场操作及观察;
2)内外部具备特殊减震橡胶支撑脚和保护铝箱,可有效减缓运输中的颠簸震动和吊装时的冲击。保证了变频电源的长期稳定性和可靠性;
3)参数显示:触摸或外接鼠标大屏幕液晶界面显示系统可显示谐振电压(即试验前设置的目标电压)、试验频率、测量频率、低压电压、低压电流、耐压时间、过压保护、过流保护、闪络保护、阶段升压及阶段计时、操作模式切换、电容,电感,频率互换计算、参数查询等, 还可显示频率曲线、电压曲线等可直观地判断当次试验谐振频率准确及稳定性;
4)参数设置:大屏幕触摸液晶彩屏和外接鼠标直接完成各种参数的设置,可对起始频率、终止频率、起始电压、阶段升压和计时、测量分压器变比、激励变变比、过压保护、过流保护、闪络保护、试验模式、电容电感频率互换计算、参数设置提示以及帮助等参数进行设置或选择;
5)35KV31500kVA变压器耐压测试仪试验模式:触摸屏和外接鼠标操作,有全自动、半自动、手动三种运行状态。具备升压、调谐(含手动、自动)、分段加压和计时、运行状态、模式切换、故障提示、电容电感频率互换计算功能等;
6)保护功能及其信息提示:具备高压过压保护、低压过流、过流保护,以及失谐保护、零位、闪络保护、紧急停机、欠压保护等多重保护功能;
7)数据存储功能:试验结果保存(手动保存)、打印、上传、回查等。
① 试验结果:手动或自动试验完毕后,在试验结果界面中可显示出试验时的详细参数,当试验发生中断时,可提示中断状态。可将参数保存在存储器中,该存储器为非易失存储器,可保存50次试验记录;
② 数据查询:可将已保存的试验结果数据显示到屏幕上,同时具有USB接口,可将数据输出打印或利用设备所携带打印机打印;(打印机属客户自选,若客户有此需求,须在合同中予以特别写明)
8)自动稳压功能:系统根据设定的试验电压或手动升压结果,自动跟踪并维持稳定的试验电压,电压稳定度可达1.0%;
9)调频范围及频率分辨率均可设定:调频范围可设为30~300Hz、45~100Hz、200-300Hz、按需设置,可加快调谐过程;频率分辨率根据需要,可预设为0.1Hz、0.2Hz、0.5Hz、或1.0Hz,在调谐效率与调谐精准度之间取得优化平衡;
10)频率调节分为粗调和细调,并可自动寻找试验谐振点,保证谐振频率在整个试验过程中不发生漂移;
3. 高压电抗器DK-44kVA/22kV 1节
a) 额定容量:44kVA;
b) 额定电压:22kV;
c) 额定电流:2A;
d) 品质因素:Q≥30 (f=45Hz);
e) 结 构:干式;
4. 电容分压器FRC-30kV/3000pF 1套
a) 额定电压:30kV;
b) 高压电容量:3000pF
c) 介质损耗:tgσ≤0.5%;
d) 分 压 比:3000:1
e) 测量精度:有效值1.5级;
“ 串联谐振 “高压设备供应商而努力。 串联谐振逆变器的基本原理图如图1所示。它包括直流电压源,和由开关S1~S4组成的逆变桥及由R、L、C组成的串联谐振负载。其中开关S1~S4可选用IGBT、SIT、MOSFET、SITH等具有自关断能力的电力半导体器件。逆变器为单相全桥电路,其控制方法是同一桥臂的两个开关管的驱动信号是互补的,斜对角的两个开关是同时开通与关断的。
串联谐振逆变器的控制方法
调幅控制(PAM)方法
35KV31500kVA变压器耐压测试仪调幅控制的方法并非一种,我们可以采用调节直流电压源输出(逆变器输入)电压Ud(可以用移相调压电路的方法,也可以用斩波调压电路加电感和电容组成的滤波电路,来实现调节输出功率的目的。即逆变器的输出功率通过输入电压调节,由锁相环(PLL)完成电流和电压之间的相位控制,以保证较大的功率因数输出。这种方法的优点是控制简单易行,缺点是电路结构复杂,体积较大。
脉冲频率调制(PFM)方法
脉冲频率调制方法是通过改变逆变器的工作频率,从而改变负载输出阻抗以达到调节输出功率的目的。
从串联谐振负载的阻抗特性
可知,串联谐振负载的阻抗随着逆变器的工作频率(f)的变化而变化。对于一个恒定的输出电压,当工作频率与负载谐振频率偏差越大时,输出阻抗就越高,因此输出功率就越小,反之亦然。
脉冲频率调制方法的主要缺点是工作频率在功率调节过程中不断变化,导致集肤深度也随之而改变,在某些应用场合如表面淬火等,集肤深度的变化对热处理效果会产生较大的影响,这在要求严格的应用场合中是不允许的。但是由于脉冲频率调制方法实现起来非常简单,故在以下情况中可以考虑使用它:
1)如果负载对工作频率范围没有严格限制,这时频率必须跟踪,但相位差可以存在而不处于谐振工作状态。
2)如果负载的Q值较高,或者功率调节范围不是很大,则较小的频率偏差就可以达到调功的要求。
脉冲密度调制(PDM)方法
脉冲密度调制方法就是通过控制脉冲密度,实际上就是控制向负载馈送能量的时间来控制输出功率。其控制原理如图2所示。
这种控制方法的基本思路是:假设总共有N个调功单位,在其中M个调功单位里逆变器向负载输出功率;而剩下的N-M个单位内逆变器停止工作,负载能量以自然振荡形式逐渐衰减。输出的脉冲密度为M/N,这样输出功率就跟脉冲密度联系起来了。因此通过改变脉冲密度就可改变输出功率。
脉冲密度调制方法的主要优点是:输出频率基本不变,开关损耗相对较小,易于实现数字化控制,比较适合于开环工作场合。
脉冲密度调制方法的主要缺点是:逆变器输出功率的频率不完全等于负载的自然谐振频率,在需要功率闭环的场合中,工作稳定性较差。由于每次从自然衰减振荡状态恢复到输出功率状态时要重新锁定工作频率,这时系统可能会失控。因此在功率闭环或者温度闭环的场合,工作的稳定性不好。其另一个缺点就是功率调节特性不理想,呈有级调功方式。
谐振脉冲宽度调制(PWM)方法
在图3中,谐振脉冲宽度调制是通过改变两对开关管的驱动信号之间的相位差来改变输出电压值以达到调节功率的目的。即在控制电路中使原来同相的两个桥臂开关(S1,S2)、(S3,S4)的驱动信号之间错开一个相位角,使得输出的正负交替电压之间插入一个零电压值,这样只要改变相位角就可以改变输出电压的有效值,最终达到调节输出功率的目的。
这种控制方法的优点是电源始终工作在谐振状态,功率因数高。但存在反并联二极管的反向恢复问题、小负载问题、软开关实现问题。
脉宽加频率调制方法
针对上述控制方法的优缺点,一些复合型控制方法的研究日益引起重视,脉宽加频率调制方法就是一种较好的控制方法。
在一般的逆变器中,常用的移相PWM方法的工作频率是固定的,不需考虑负载在不同工作频率下的特性。而在串联谐振感应加热电源中使用移相PWM方法时,则要求其工作频率必须始终跟踪负载的谐振频率,通常使某一桥臂的驱动脉冲信号与输出电流的相位保持一致,而另外一个桥臂的驱动脉冲信号与输出电流的相位则可以调节。图4和图5中,S1和S4驱动信号互补,S2和S3驱动脉冲信号互补,S1驱动信号相位与负载电流的相位保持相同,而S3的驱动脉冲与S1的驱动脉冲信号之间的相位差β在0°~180°范围内可调,调节β就可以调节输出电压的占空比,即调节输出功率。
根据输出电压和输出电流的不同相位关系,有2种PWM调节方式:升频式PWM和降频式PWM。
升频式
在图4中,为保证滞后臂(S1,S4)触发信号前沿同电流信号同相,角频率须根据移相角β的大小改变。即在通过调节移相角β调节功率的同时改变频率f。在β调节过程中,在增大输出脉冲宽度的同时,将引起输出电压相对于输出电流的相位不断减小并滞后于输出电流,这说明输出频率也在不断升高,因此称这种调制方式为升频式PWM。这时S1、S4管各导通180°,已经实现ZCS。超前臂S2,S3在大电流下开通,D2,D3在大电流下关断因而有反向恢服。通过在S2、S3臂上串联电感也可实现ZCS。,这种方法适用于有关断尾部电流、关断损耗占主导的双极型器件,如IGBT,SIT,MCT等。同时应注意电路布局减小分布电感,以减小二极管反向恢复带来的电压尖峰。角频率为
降频式
在图5中,调节β在增大输出脉冲宽度的同时,将引起输出电压相对于输出电流的相位不断减小,使相位差减小,这说明输出频率在不断降低,因此称这种方式为降频式PWM。
在这种方式下,二极管D2,D3均自然过零关断,D1,D4不导通,没有二极管反向恢复所带来的问题。S1、S4在零电流下开关(ZCS),S2、S3在大电流下关断。通过在S2、S3上并联电容即可实现ZVS。这种方法适和高频电源和内建反并联二极管反向恢复问题比较严重的器件,如MOSFET等。可避免二极管反向恢复所带来的电流尖峰和器件的损耗增加。
为保证超前臂触发信号前沿同电流信号同相,角频率为
由以上分析可知,中试控股无论是升频式PWM,还是降频式PWM,两者有一个共同的特点,即在调节输出电压脉宽的同时,也改变了负载的工作频率。故称之为脉宽加频率调制方法。
结语
此篇中试控股文章主要对脉宽以及频率的调制进行详细的分析,并且给出了一些常用的串联谐振单相全桥逆变器功率和频率的控制方式。这使得工程师们能够以负载为基准来选择在不同场合适用的控制方法。
快速跳转