
首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:6kV传输电缆交流耐压试验装置
ZSDBF-5KVA多倍频感应耐压试验装置
不仅可做互感器感应耐压试验,还可兼做伏安特性试验。
参考标准:DL/T 848.4-2004
多倍频感应耐压试验装置:ZSDBF-5KVA多倍频感应耐压试验装置实现各种被试品的预防性交流耐压试验和交接性交流耐压试验,中试控股满足35kV及以下电压等级互感器的感应耐压试验我中试控股的感应耐压试验装置采用微机控制
中试控股结合先进的变频及高速采样技术设计制造,比传统的三倍频发生器效率高,输出电压稳定,测量精度高,重复性好,并且可以实现自动升压、升压至设定值后自动计时、计时完成后自动降压的功能,操作极其简单。
仪器采用背光式大屏幕液晶显示,全中文操作界面,带实时时钟和微型打印机。仪器采用一体化结构,重量轻,便于携带。
变压器和互感器的感应耐压试验是中试控股保证产品质量符合标准的一项重要试验。变压器绕组的匝间,层间,段间及相间的纵绝缘感应耐压试验,则是变压器绝缘试验中的重要项目。纵绝缘试验需要通过倍频电源装置,施加试验电压,进行耐压试验。
对PT进行感应耐压试验可帮助工作人员及时发现问题,避免造成严重后果。
仪器采用背光式大屏幕液晶显示,全中文操作界面,带实时时钟和微型打印机。仪器采用一体化结构,重量轻,便于携带。
ZSDBF-5KVA多倍频感应耐压试验装置实现各种被试品的预防性交流耐压试验和交接性交流耐压试验,中试控股满足35kV及以下电压等级互感器的感应耐压试验;
中试控股考验交联橡塑电力电缆、电力变压器、GIS、互感器、绝缘子、发电机、开关等被试品绝缘承受各种过电压能力及容性负载的交流耐压试验。
?
对于变压器直流电阻测试仪的测量,接通测试线后,关闭电源开关,打开电源指示灯,按“启停键”。根据测量值选择电阻档位范围,按下档位开关,档位指示灯亮,液晶屏上显示的稳定值即为测量电阻值。读取数值时,请注意所选范围内的单元,并测量大电感样品,如电力变压器、除线圈以外的其他测试电路。为了避免电磁干扰,不必测量最佳短路。
变压器直流电阻测试仪放电时,测试后应直接切断主电源。如果在感知测试中操作后不应立即切断电源,则仪器应具有连续放电过程,通常放电至少20秒。否则,电感的反电势将是危机的人身安全。 对于双绕组变压器,当额定电流通过变压器的一个绕组而另一个绕组短路时,变压器吸收的有功功率称为变压器短路损耗。对于多绕组变压器,短路损耗基于指定的绕组堆叠。
缠绕变压器时,需要大量铜线。这些铜线有电阻。当电流流动时,电阻将消耗一定的功率。这部分损失经常转化为热量并被消耗掉。这种损失被称为“铜损”。
当变压器的初级绕组通电时,线圈产生的磁通量也是铁芯本身的导体,在垂直于磁力线的平面设计中将感应出电势。这种电势在铁芯的横截面上形成一个闭环,并产生电流,称为“涡流”。这种“涡流”增加了变压器的损耗,导致变压器铁芯发热,变压器温升增加。由“涡流”引起的损耗称为“铁损”。
因此,变压器温升主要是由铁损和铜损引起的。由于变压器中的铁损和铜损,其输出功率总是小于输入功率。
变压器绕组变形测试是为了测量变压器,例如在运输过程中绕组匝数,相短路或碰撞,从而导致线圈的相对位移,以及在运行过程中由于线圈变形而引起的电磁张力所引起的短路和故障情况变压器绕组等故障测量上述由变形引起的故障将改变变压器绕组的分布参数,影响并改变变压器的原始频率响应,并且可以应用幅度变化和谐振频率点偏移的频域特性。根据此特性,可以使用中试控股电力频响法变压器绕组变形测试仪进行测试。
频响法变压器绕组变形测试仪采用国内FRA分析的原理。该原理已经对近500个变压器绕组进行了变形测试。已经发现了一些绕组严重变形和轻微变形的变压器。但是,在测试过程中,由于测试方法不正确以及对外部干扰的考虑不足,也会引起误判。本文分析了由于接地线处理不当而引起的误判的示例。
当前在电网中使用的变压器绕组变形测试仪主要使用频率响应分析方法来诊断变压器绕组变形。频率响应分析方法(FRA)基于变压器绕组分布参数的网络分析。功能上,每个绕组都可以看作是由电阻,电容,电感等分布参数组成的无源两端口网络。根据电气理论,如果绕组发生机械变形,则绕组上的电感和电容等分布参数网络势必会发生变化随着网络参数的变化,其频率响应特性也会发生变化。因此,通过比较变压器绕组的频率响应特性,可以正确地诊断变压器绕组的变形。 中试控股电力讲解变压器绕组的变形已成为造成变压器损坏的重要原因之一。尽管绕组的变形只是一个孤立的情况,但对变压器极为有害。通过对变压器绕组进行变形试验,可以有效地发现各种变形的原因,并采取相应的对策和措施,为变压器的安全运行提供可靠的保证。目前,变压器绕组变形测试是高压电气测试专业的一种新型研究课题,也是一项技术含量很高的课题。为此,相关专业人员需要认真学习新知识,积累新经验并研究新主题,以便更好地及时发现和解决问题。
配合高阻抗电容分压器,能直接监测一次侧的高压自动完成感应耐压试
电压互感器(PT)是电力系统中的关键设备,中试控股感应耐压试验是保证产品质量符合标准的一项重要试验。PT绕组的匝间、层间、段间及相间的纵绝缘感应耐压试验,则是PT绝缘试验中的重要项目,纵绝缘试验需通过变频电源装置施加试验电压,进行耐压试验。
我中试控股的感应耐压试验装置采用微机控制,中试控股结合先进的变频及高速采样技术设计制造,比传统的三倍频发生器效率高,输出电压稳定,测量精度高,重复性好,并且可以实现自动升压、升压至设定值后自动计时、计时完成后自动降压的功能,操作极其简单。
注意:最小分辨率为0.1Hz的步进变化,不仅可用于PT的感应耐压试验,中试控股还能用于其它需要使用变频电源的场合。
装置容量:5kW
输入电压:AC,三相,380V±10%。
电源频率:50Hz。
输出电压:0 ~400V
输出频率:50Hz,100Hz,150Hz,200Hz(可选)。
波形畸变率:<3%。
保护功能:对被试品具有过流 、过压及试品闪络保护 (见变频电源部分);
5kW/380V 1台
额定输出容量:5kW
工作电源:380±10%V(三相),工频
输出电压:0 –400V, 单相,
额定输入电流:25A
额定输出电流:25A
噪声水平 :≤50dB
重 量:约12kg;
1、串联逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。
并联逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。这就是说,两者都是工作在容性负载状态。
2、串联逆变器是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。即应有一段时间(t)使所有晶闸管(其它电力电子器件)都处于关断状态。此时的杂散电感,即从直流端到器件的引线电感上产生的感生电势,可能使器件损坏,因而需要选择合适的器件的浪涌电压吸收电路。此外,在晶闸管关断期间,为确保负载电流连续,使晶闸管免受换流电容器上高电压的影响,必须在晶闸管两端反并联快速二极管。
并联逆变器是恒流源供电,为避免滤波电抗Ld上产生大的感生电势,电流必须连续。也就是说,必须保证逆变器上、下桥臂晶闸管在换流时,是先开通后关断,也即在换流期间(tγ)内所有晶闸管都处于导通状态。这时,虽然逆变桥臂直通,由于Ld足够大,也不会造成直流电源短路,但换流时间长,会使系统效率降低,因而需缩短tγ,即减小Lk值。
串联谐振和并联谐振区别二
1、串联逆变器的工作频率必须低于负载电路的固有振荡频率,即应确保有合适的t时间,否则会因逆变器上、下桥臂直通而导致换流的失败。并联逆变器的工作频率必须略高于负载电路的固有振荡频率,以确保有合适的反压时间t,否则会导致晶闸管间换流失败;但若高得太多,则在换流时晶闸管承受的反向电压会太高,这是不允许的。
2、串联逆变器的功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率,即改变负载功率因数cosφ。并联逆变器的功率调节方式,一般只能是改变直流电源电压Ud。改变cosφ虽然也能使逆变输出电压升高和功率增大,但所允许调节范围小。
3、串联逆变器在换流时,晶闸管是自然关断的,关断前其电流已逐渐减小到零,因而关断时间短,损耗小。在换流时,关断的晶闸管受反压的时间(t+tγ)较长
串联谐振和并联谐振区别三
并联逆变器在换流时,晶闸管是在全电流运行中被强迫关断的,电流被迫降至零以后还需加一段反压时间,因而关断时间较长。相比之下,串联逆变器更适宜于在工作频率较高的感应加热装置中使用
1、串联逆变器的晶闸管所需承受的电压较低,用380V电网供电时,采用1200V的晶闸管就行,但负载电路的全部电流,包括有功和无功分量,都需流过晶闸管。逆变晶闸管丢失脉冲,只会使振荡停止,不会造成逆变颠覆。
并联逆变器的晶闸管所需承受的电压高,其值随功率因数角φ增大,而迅速增加。但负载本身构成振荡电流回路,只有有功电流流过逆变晶闸管,而且逆变晶闸管偶而丢失触发脉冲时,仍可维持振荡,工作比较稳定。
2、串联逆变器可以自激工作,也可以他激工作。他激工作时,只需改变逆变触发脉冲频率,即可调节输出功率;而并联逆变器一般只能工作在自激状态。
3、在串联逆变器中,晶闸管的触发脉冲不对称,不会引入直流成分电流而影响正常运行;而在并联逆变器中,逆变晶闸管的触发脉冲不对称,则会引入直流成分电流而引起故障。
串联谐振和并联谐振区别四
1、串联逆变器起动容易,适用于频繁起动工作的场合;而并联逆变器需附加起动电路,起动较为困难。
2、串联逆变器中的晶闸管由于承受矩形波电压,故du/dt值较大,吸收电路起着关键作用,而对其di/dt要求则较低。在并联逆变器中,流过逆变晶闸管的电流是矩形波,因而要求大的di/dt,而对du/dt的要求则低一些。
3、串联逆变器的感应加热线圈与逆变电源(包括槽路电容器)的距离远时,对输出功率的影响较小。如果采用同轴电缆或将来回线尽量靠近(扭绞在一起更好)敷设,则几乎没有影响。而对并联逆变器来说,感应加热线圈应尽量靠近电源(特别是槽路电容器),否则功率输出和效率都会大幅度降低。
4、串联逆变器感应线圈上的电压和槽路电容器上的电压,都为逆变器输出电压的Q倍,流过感应线圈上的电流,等于逆变器的输出电流。并联逆变器的感应线圈和槽路电容器上的电压,都等于逆变器的输出电压,而流过它们的电流,则都是逆变器输出电流的Q倍。
上一篇:传输电缆交流耐压试验装置
下一篇:10kV传输电缆交流耐压试验装置
快速跳转