首页 > 新闻中心 > 高压技术<

高压技术
10kV电力电缆交流耐压试验装置
时间:2023-05-05

中试控股技术研究院鲁工为您讲解:10kV电力电缆交流耐压试验装置

ZSBP-270kVA/108kV变频串联谐振试验装置

35kV/300mm2电缆2km的交流耐压试验,电容量≤0.389uF,试验频率30-300Hz,试验电压52kV,试验时间60min。
10kV/400mm2电缆5km的交流耐压试验,电容量≤2.1uF,试验频率30-300Hz,试验电压22kV,试验时间5min。
35kV开关柜、互感器、母线母盘的交流耐压试验,试验频率30-300Hz,试验电压95kV,试验时间1min。

参考标准:DL/T 849.6-2016,DL/T 474.4-2018

变频串联谐振试验装置ZSBP系列变频串联谐振耐压试验装置,中试控股采用调节电源频率的方式,使得电抗器与被试电容器实现谐振,从而在被试品上获得高电压大电流,因其所需电源功率小、设备重量轻体积小在国内外得到了广泛应用,是当前高电压试验的新方法和潮流。

交流耐压试验是电力设备绝缘强度有效和直接的方法,是电力预防性试验的一项重要内容。 此外,由于交流耐压试验电压一般比运行电压高,因此通过试验后,设备有较大的安全裕度,因此交流耐压试验是电力设备安全运行的一种重要手段。一般变频串联谐振试验装置来进行交流耐压试验。  
试验电压的确定交流耐压试验中,关键的问题就是正确选择试验电压的数值,一方面要求能保证绝缘水平,另一方面要考虑因试验电压过高而引起的绝缘劣化。

中试控股始于1986年 ▪ 30多年专业制造 ▪ 国家电网.南方电网.内蒙电网.入围合格供应商

220KV串联谐振交流耐压装置可以做什么? 
变频串联谐振成套耐压试验装置适用于大容量,高电压的电容性试品的交接和预防性试验;

主要针对220KV及以内的电力电缆、变压器、断路器/开关、开关柜、避雷器、电压互感器、电流互感器、套管、支柱绝缘子、电抗器、母线、隔离开关、输电线路、发电机、电动机、熔断器、电容器、接触器、配电箱、绝缘材质、变电站系统的交流耐压试验。

装置主要技术参数及功能:
1. 额定容量:270kVA;
2. 输入电源:单相220或三相380V电压,频率为50Hz;
3. 额定电压:27kV;54kV;108kV
4. 额定电流:10A;5A;2.5A
5. 工作频率:30-300Hz;
6. 装置输出波形:正弦波
7. 波形畸变率:输出电压波形畸变率≤1%;
8. 工作时间:额定负载下允许连续60min;过压1.1倍1分钟;
9. 温 升:额定负载下连续运行60min后温升≤65K;
10. 品质因素:装置自身Q≥30(f=45Hz);
11. 保护功能: 对被试品具有过流、过压及试品闪络保护(详见变频电源部分);
12. 测量精度:系统有效值1.5级;
串联谐振工作环境:
1. 环境温度:-100C –50 0C;
2. 相对湿度:≤90%RH;
3. 海拔高度: ≤1000米;
简易读懂:变频串联谐振耐压试验装置可以做什么?
变频串联谐振成套耐压试验装置适用于大容量,高电压的电容性试品的交接和预防性试验,主要针对电力电缆、变压器、断路器/开关、开关柜、避雷器、电压互感器、电流互感器、套管、支柱绝缘子、电抗器、母线、隔离开关、输电线路、发电机、电动机、熔断器、电容器、接触器、配电箱、绝缘材质、变电站系统的交流耐压试验,对被测试品做承受过电压预防交流试验和交接交流试验。
变频串联谐振耐压试验装置组成部分:变频电源主机、激励变压器、电抗器、电容分压器、补偿电容器、测试附件组成。
元器件(纯进口):功率器件:德国英飞凌,模块:日本富士IGBT,芯片:英特尔等

结构: 采用干式结构,绝缘耐热等级H级,满足干式变压器国家规范要求;高﹑低压绕组间和铁芯设静电屏蔽,既作为励磁变,又是隔离变;内置过电压保护,防止击穿反击。

采用了调节电源的频率的方式使得电抗器与被试电容器实现谐振,在被试品上获得高电压大电流,是当前高电压试验的一种新的方法和潮流,在国内外已经得到广泛的应用。
采用了专用的SPWM数字式波形发生芯片,频率分辨率16位,在20~300Hz时频率细度可达0.1Hz;采用了正交非同步固定式载波调制方式,确保在整个频率区间内输出波形良好;功率部分采用了先进的IPM模块,在小重量下确保仪器稳定和安全。

串联谐振装置

由于电缆是一个电容性负载,升压变压器输出到电缆上的工频电压将会有容升效应,容升的大小与电缆电容量大小及升压变压器和电缆电容的谐振有关,通常容升可能会超过20%30%。因此,需要在升压变压器的输出端并联一个分压器,以准确测量电缆上的试验电压,防止电缆上电压过高而损坏电缆的绝缘。这种试验系统的优点是线路简单,操作方便,并可对有绝缘缺陷的电缆进行加压燃烧,以发现故障点。缺点是系统体积大,输出功率与输入功率相同,耗电大,斌品击穿时升压变压器的高压输出直接对地放电,容易造成地电位升高,设备损坏,威胁人身安全。而且,由于电缆燃烧的程度较难把握,常常会出现几层电缆全被烧毁的情况,给电缆厂造成不必要的损失。

由于电力发展的需要,电缆厂生产的电缆,电压等级越来越高,截面积越来越大,长度越来越长,因此,出厂耐压试验设备的容量也随之越来越大。通常的升压变压器试验系统由于自身的缺陷,已无法满足电缆出厂耐压试验的要求。尤其是随着两网改造的深人,对架空绝缘导线和高压交联电缆的需求日益增大,因串联谐振耐压试验装置适用于电力电缆串联谐振、电力变压器串联谐振、发电机组(水力发电机或火力发 电机组)、电机串联谐振、开关柜串联谐振、GIS开关等大容量,高电压的电容性试品的交接和预防性试验。使更为先进、经济的串联谐振耐压试验系统逐渐被广大电缆厂所接受。DAXZ系列串联谐振耐压试验装置具有与稳定性、可靠性高的优点。是串联谐振耐压试验装置生产厂家,10年服务829家电力单位和相关机构客户,可根据客户需求制造10KV35KV110KV220KV500KV电压等级的串联谐振耐压试验装置。

串联谐振装置

1串联谐振(电压谐振)

由电感(感性试品)与电容(容性试品)以及中压电源串联组成。改变回路参数或电源频率,回路即可调谐至谐振,同时将有一个幅值远大于电源电压,且波形接近于正弦波的电压加在试品上。 谐振条件和试验电压的稳定性取决于电源频率和试验回路特性的稳定性。当试品放电时,电源输出的电流较小,从而限制了对试品绝缘的损坏。

3.2并联谐振(电流谐振)

由电感(感性试品)与电容(容性试品)以及中压电源并联组成。改变回路参数或电源频率,回路即可调谐至谐振,同时将有一个幅值远大于电源电流,且波形接近于正弦波的电压加在试品上。

谐振条件和试验电压的稳定性取决于电源频率和试验回路特性的稳定性。当试品放电时,电源输出的电流较小,从而限制了对试品绝缘的损坏。

3.3谐振电抗器

用于同试品电容进行谐振,以获得高电压或大电流的电抗器。 3.4电容分压器

采用电容元件,由高压臂和低压臂组成的转换装置。输入电压加到整个装置上,而输出电压则取自低压臂。通常低压臂输出电压恒定为100VAC

双向DC/DC变换器是伴随着应用而出现的电能变换技术,随着社会生活和工业生产对于环境保护、节约能源等的需求越来越多,双向DC/DC变换器得到了迅速的发展。由于软开关技术可以提高变换器的工作频率和工作性能,减小变换器的体积和重量,因此近年来人们对双向DC/DC变换器的研究便集中于使用软开关技术来实现变换器的高频化。本文以串联谐振变换器的软开关技术为基础,提出了一种双向DC/DC变换器,通过控制方法的改进实现了能量的双向传递和开关管的软开关。

    直流变换器是开关电源中的一个重要组成部分,被广泛的应用于科研、航天卫星、工业生产、家用电器等领域中。随着工业生产和科学技术的发展,在直流不停电电源系统、太阳能光伏独立发电系统、电动汽车电源、航空能源等领域中,对DC/DC变换器的性能要求不断增加,为了减轻系统的体积和重量,节省成本,提高变换器的工作效率,双向DC/DC变换器在这些领域中获得了越来越广泛的应用,引起了国内外专家的广泛关注。由于环境保护和节约能源的要求,人们对双向DC/DC变换器的需求也不断增多,于是不断提出了新的拓扑结构和新的控制方法,双向DC/DC变换器作为电力电子技术中电能变换的一个新分支得到了迅速的发展。

    我们所熟悉的DC/DC变换器多数是单向工作的,这是由于在通常的单向DC/DC变换器(UnidirectionalDC/DCConverterUDC)中,主功率传输通路上一般都有二极管这个环节,故能量经变换器流动的方向只能是单方向的,即在图中能量只能从V1流动到V2,而不能反向流动。然而对于有些需要能量双向流动的场合(V1V2可以是直流有源负载或直流电压源,它们的电压极性保持不变,能量在不同时刻可以从V1传输到V2,也可以从V2传输到V1),如果仍使用单向DC/DC变换器,则需要将两个单向DC/DC变换器反向并联,一台单向DC/DC变换器被用来控制能量从V1V2的流动,另一台反并联的单向DC/DC变换器被用来控制能量从V2V1的反向流动。这样一来,由于使用了两台DC/DC变换器,总体电路变得复杂化,变换装置的体积较大,利用率和性价比较低,而且由正向工作到反向工作的切换时间比较长。通过研究分析,可以通过合理的拓扑结构和控制方法使用一2个变换器来完成这两个独立的单向变换器的功能,即采用双向DC/DC变换器。

    双向DC/DC变换器是指在保持变换器两端的直流电压极性不变的情况下,根据需要通过控制电路调节能量传输的大小和方向的DC/DC变换器。如图1-2所示,双向DC/DC变换器置于直流电源V1V2之间,控制两者之间的能量传输,其对应的平均输入电流分别为I1I2。根据实际应用的需要,可以通过双向DC/DC变换器的的控制器控制功率流向:使能量从V1传输到V2,称为正向工作模式(Forward-mode),使能量从V2传输到V1,称为反向工作模式(Backward-mode)

    从电路拓扑上讲,单向DC/DC变换器可简化为含有单向DC/DC基本变换单元的基本原理结构,该基本变换单元由一个有源开关器件和一个二极管构成。而常规的双向DC/DC变换器,可简化为含有双向DC/DC基本变换单元的基本原理结构,该基本变换单元由两个各自并有反并联二极管的有源开关器件构成,这些反并二极管也可以是有源开关器件内的寄生二极管。基本的Boost/Buck双向DC/DC变换器,该变换器有两种基本的工作方式:S1采用PWM工作方式,S2采用与S1互补的方式工作,变换器实际上为一个Boost变换器,能量从V1传输到V2S2采用PWM工作方式,S1采用与S2互补的方式工作,此时变换器实际上为一个Buck变换器,能量从V2传输到V1

    与传统的采用两套单向DC/DC变换器反向并联来达到能量的双向传输的方案相比,双向DC/DC变换器应用同一个变换器来实现能量的双向流动,使用的总体开关器件数目少,而且可以大大地减小装置体积,节约成本,提高装置的利用率和系统的动态响应速度。而且,在低压大电流场合,一般双向DC/DC变换器更有可能在主电路结构不变的情况下使用同步整流器工作方式,有利于降低开关管的通态损耗(Conductionloss)

 

 

 

 

 

 

 

 

销售热线

  • 400-046-1993全国统一服务热线
  • 销售热线:027-83621138
  • 售后专线:027-83982728
  • 在线QQ咨询: 149650365      
  • 联系我们

 

增值服务

  • 三年质保,一年包换,三个月试用

 

 

 

 


 

版权所有:湖北中试高测电气控股有限公司 鄂TCP备12007755号