
首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:110KV串联谐振交流试验仪
ZSBP-540kVA/270kV变频谐振试验装置
试验数据保存,可即时打印试验数据,也可将数据保存以备下次打印。
参考标准:DL/T 849.6-2016,DL/T 474.4-2018
变频谐振试验装置:变频串联谐振耐压试验装置采用了调节电源的频率的方式使得电抗器与被试电容器实现谐振,在被试品上获得高电压大电流,是当前高电压试验的一种新的方法和潮流,在国内外已经得到广泛的应用。
变频串联谐振耐压试验装置组成部分:变频电源主机、激励变压器、电抗器、电容分压器、补偿电容器、测试附件组成。元器件(纯进口):功率器件:德国英飞凌,模块:日本富士IGBT,芯片:英特尔等
技术参数及功能描述
设备遵循标准
为了防止电击,接地导体必须与地面相连。在与本产品输入或输出终端连接前,应确保本产品已正确接地。
数据查询功能,根据试验日期查询以往的试验数据。
采用了专用的SPWM数字式波形发生芯片,频率分辨率16位,在20~300Hz时频率细度可达0.1Hz;采用了正交非同步固定式载波调制方式,确保在整个频率区间内输出波形良好;功率部分采用了先进的IPM模块,在小重量下确保仪器稳定和安全。
1、技术参数
? 输入电源:
电压: 380/220V±10%
频率: 45/65Hz
? 输出电压:0-500V;
? 输出波形:正弦波
? 频率调节范围:30-300Hz
? 频率分辨率:0.01Hz
? 频率稳定度:0.1%
? 频率步进值:5Hz,1Hz,0.1Hz,0.01Hz
? 电压分辨率:0.1kV
? 电压测量精度:1.5%
? 电压步进值: 1%,0.5%,0.1%,0.01%
? 运行连续工作时间:60分钟
2、功能描述
变频电源有如下几个显著的特点:
? 波形为脉宽电压调节的方波。
? 内部由ARM控制,操作功能得到优化,操作简单。
? 自动扫频,寻找谐振点.频率范围30-300Hz,可设置扫频范围,扫频最大耗时40秒钟(全频扫), 频率分辨率0.01Hz。
? 自动试验,用户可设置试验程序,试验程序分为5段,系统自动按设置的程序完成试验过程。
? 耐压时自动跟踪电压,电压正常波动时自动调整电压到目标电压,异常波动时提示用户电压异常波动,由用户根据试验情况进行操作。
? 实时显示试验状态,用户可根据试验状态进行相应操作。
? 强大的保护功能:过流保护,过压保护和闪络保护,过热保护,高压异常保护,软/硬件同时保护,确保安全。
《电气装置安装工程电气设备交接试验标准》 GB50150-2006
《水轮发电机组安装技术规范》 GB/T8564――2003
《高压谐振试验装置》 DL/T 849.6—2004
《电抗器》 GB10229.88
《电力设备预防性试验规程》 DL/T596-1996
《耦合电容器和电容分压器》 IEC358(1990)
注意所有终端的额定值:为了防止火灾或电击危险,请注意本产品的所有额定值和标记。在对本产品进行连接之前,请阅读本产品使用说明书,以便进一步了解有关额定值的信息。
在有可疑的故障时,请勿操作:如怀疑本产品有损坏,请本公司维修人员进行检查,切勿继续操作。
请勿在潮湿环境下操作
请勿在易爆环境中操作
保持产品表面清洁和干燥
2.1 调幅控制(PAM)方法
调幅控制方法是通过调节直流电压源输出(逆变器输入)电压Ud(可以用移相调压电路,也可以用斩波调压电路加电感和电容组成的滤波电路,来实现调节输出功率的目的。即逆变器的输出功率通过输入电压调节,由锁相环(PLL)完成电流和电压之间的相位控制,以保证较大的功率因数输出。
这种方法的优点是控制简单易行,缺点是电路结构复杂,体积较大。
2.2 调制(PFM)方法
改变逆变器的工作频率,从而改变负载输出阻抗以达到调节输出功率的目的。
从串联谐振负载的阻抗特性
可知,串联谐振负载的阻抗随着逆变器的工作频率(f)的变化而变化。对于一个恒定的输出电压,当工作频率与负载谐振频率偏差越大时,输出阻抗就越高,因此输出功率就越小,反之亦然。
脉冲频率调制方法的主要缺点是工作频率在功率调节过程中不断变化,导致集肤深度也随之而改变,在某些应用场合如表面淬火等,集肤深度的变化对热处理效果会产生较大的影响,这在要求严格的应用场合中是不允许的。但是由于脉冲频率调制方法实现起来非常简单,故在以下情况中可以考虑使用它:
1)如果负载对工作频率范围没有严格限制,这时频率必须跟踪,但相位差可以存在而不处于谐振工作状态。
2)如果负载的Q值较高,或者功率调节范围不是很大,则较小的频率偏差就可以达到调功的要求。
基波或高频谐振的处理: 有运行电容器时,切除运行电容器;没有运行电容器时,投入一组电容器;以上措施无法消谐时,切除该母线所有电容器,向调度申请切除部分馈线,最好是先切长线路。分频谐振的处理:切除该母线所有电容器;谐振仍无法消除时,向调度申请切除该母线上的线路,直至谐振消除;若所有线路全部切除后仍无法消谐,向调度申请切除变低开关,将母线停电;恢复母线及线路送电。
谐振电路中一个非常重要的参数就是品质因数Q,它揭示了谐振电路的各种重要关系,Q值的大小直接影响谐振电路的通频带和选择性等重要指标。然而,在现有的电子教科书中,对谐振电路品质因数的描述大都比较简单,这不利于学生对这一概念与其内涵的真正理解与把握。特别是对品质因数Q值的求解,学生更是感到无从下手。针对于这问题,本文从品质因数的定义出发进行研究,介绍了一种计算品质因数Q值简单而又有效的方法。
1.品质因数的定义
电路的品质因数分为串联电路的品质因数与并联电路的品质因数,以及部分电路的品质因数和整体电路的品质因数。品质因数有以下几种定义方式:
1.1用能量定义品质因数的能量定义清楚地表达了品质因数的物理意义,对于各种电路具有普遍意义,但在电路中利用能量定义来计算品质因数Q值相对比较复杂,有时候甚至难以计算。计算公式如下:
品质因数Q=2π(ω0/ωR0)
式中:0ω———谐振时电路储存的能量,ωR0———谐振时电路在1周期内消耗的能量。
品质因数Q=2π(ωLOM/P0T0)
式中:ωLOM———谐振时电路中电感能量的最大值,P0———谐振时电路中消耗的有功功率,T0———谐振周期。
1.2用功率定义品质因数的功率定义是从另一个角度对品质因数的能量定义的一种解释,它也较好地表达了品质因数的物理意义,用它来计算品质因数Q值的方法相对来说比用能量定义的方法来求解要好得多,不会出现计算不出来的情况。但对较为复杂电路,其计算过程较为繁琐。其计算公式如下:
品质因数Q=Q0/P0
式中:Q0———谐振时的无功功率,P0———谐振时的有功功率。
1.3串联电路品质因数的定义
1.3.1用参数定义如图1所示的RLC串联谐振电路,一般教科书用参数这样定义串联电路的品质因数:谐振时回路感抗值(或容抗值)与回路电阻R的比值称为回路的品质因数,用参数计算公式如下:
品质因数Q=ω0L/R=1/ω0CR=1R?L/R(1)
式中:0ω———电路谐振角频率,L———电路中的电感,C———电路中的电容,R———电路的电阻。
1.3.2用电压定义如图1所示的RLC串联谐振电路,谐振电路的品质因数是由电路在谐振时L、C元件上的电压与电压源电压之间的关系引出的。其计算公式表达如下:
Q=UL/U=UC/U
式中:UL———谐振时电路中的电感电压,UC———谐振时电路中的电容电压,U———谐振时电路中的总电压。
1.4并联电路品质因数的定义
1.4.1用参数定义
如图2(A)(、B)所示的并联谐振回路,其品质因数定义的方法和串联谐振定义的方法一样,用参数计算公式如下:
品质因数Q=0ωL/R=RP/0ωL=RPCω0=RP?C/L
其中:L———电路中的电感,C———电路中的电容,R———串联在电感之路的损耗电阻,RP———并联谐振回路的谐振电阻。
1.4.2用电流定义
如图2所示的RLC并联谐振电路,谐振电路的品质因数是由电路在谐振时L、C元件上的电流与电流源电流之间的关系引出的。
用公式表达如下:
Q=IL/I=IC/I
式中:IL———谐振时电路中的电感电流,IC———谐振时电路中的电容电流,I———谐振时电路中的总电流。
以上讨论从4个不同角度、不同的理解去定义了品质因数,但在实际的电路中,会出现比较复杂的串并联混合电路,我们往往会感觉到束手无策,不知道如何运用上面所讨论的4种定义方法去求解电路的品质因数。许多数字系统在与系统时钟相关的频率上遭受过分的电源噪声,是否可以在电源和接地层之间连接一个如下所示的串联谐振(也称为)电路以降低这种噪声?答案是肯定的。但是,电路必须满足以下不太可能发生的条件。
上一篇:110KV谐振测试仪
下一篇:110KV串联谐振交流耐压仪
快速跳转