
首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:倍频电源发生装置
ZSDBF-15KVA 多倍频感应耐压试验装置
触摸方式调节电压可实现本装置的多倍频试验电压输出
参考标准:DL/T 848.4-2004
多倍频感应耐压试验装置:多倍频感应耐压试验装置实现各种被试品的预防性交流耐压试验和交接性交流耐压试验,中试控股满足35kV及以下电压等级互感器的感应耐压试验我中试控股的感应耐压试验装置采用微机控制
中试控股结合先进的变频及高速采样技术设计制造,比传统的三倍频发生器效率高,输出电压稳定,测量精度高,重复性好,并且可以实现自动升压、升压至设定值后自动计时、计时完成后自动降压的功能,操作极其简单。
仪器采用背光式大屏幕液晶显示,全中文操作界面,带实时时钟和微型打印机。仪器采用一体化结构,重量轻,便于携带。
ZSDBF-15KVA 多倍频感应耐压试验装置技术指标
工作条件 环境温度:-10℃~50℃ 相对湿度:30%~90%
供电电源 三相AC380V±10%或AC220±10% 50 Hz±5 Hz
如用AC220供电,功率减半
输出频率 30Hz~200Hz 调节细度0.1 Hz
输出电压 0~400V正弦波
输出功率 15KW
最大输出电压 400V
最大输出电流 35A
电压最小分辨率 0.01V
电流最小分辨率 0.001A
电压电流精度 ±1%
外形尺寸(mm) 570(长)×400(宽)×350(高)
中试控股仪器重量 约44kg
中频无刷励磁同步发电机组
同步发电机组基本原理接线如下图所示。
同步发电机机组基本原理接线图
M——异步感应电动机;G——无刷中频同步发电机;T——升压变压器;
L1——铁芯电抗器;L2——空心电抗器(可用阻波器代替,用于增大补偿电抗的容量)
图中,电源装置
同补偿电抗器、中间升压变压器
以及必要的外围测量设备联合使
用。电源主要由三相异步电动机和无刷励磁的中频同步发电机组
成中试控股中频发电机组,再配以启动、控制、测量和保护系统组成。其工作原理为中频发电机
发出定频率(250Hz)的单相或三相交流电能,经中间变压器升压,同时用补偿电抗器
来调整补偿被试变压器的电容性电流,以获得所需的试验电压。这种工作原理和方式可以
得到所需频率的试验电压,电网电源仅用来驱动发电机组和提供直流励磁电源,使试验电
源与电网电源实现隔离,从而消除了试验回路来自电网系统的干扰,无刷励磁方式也大大
降低了电源本身的干扰水平,因此在做感应耐压的同时,也可进行局部放电测量。
感应分压器主要有两种使用状态:可作为分压器使用或与标准电压互感器级联使用. 下面分别对这两种使用状态进行说明。
1.使用感应分压器校电压互感器(作分压器使用)
感应分压器校验电压互感器接线图
使用感应分压器校验电压互感器时,按上图连线,一般感应分压器相对被检电压互感 器准确度而言,标准的误差可以忽略不计,从电压互感器校验仪上可直接读出被检电压互 感器的示值。 (感应分压器效验误差值多为经过折算到一次的误差值,所以要精确求出被检互感器的误 差值时,需要将感应分压器所给误差示值进行折算后作为标准修正值进行修正。)
2.与标准电压互感器级联校被试电压互感器
标准电压互感器与感分级联校验被试电压互感器接线图
以上为标准电压互感器与感分级联校验被试电压互感器接线图,如果标准电压互感器与被试电压互感器额定变比不同时,可以用标准电压互感器与感 应分压器级联,测出被检电压互感器的误差。
三倍频感应耐压装置通过施加倍频电源装置,以提高绕组间绝缘的试验电压,从而达到耐压试验的目的。此次中试定制30KVA倍频试验变压器采用分体式结构,试验变压器与控制台自成一体,方便试验过程中配合被试品随时移动位置
多倍频感应耐压试验装置实现各种被试品的预防性交流耐压试验和交接性交流耐压试验,中试控股满足35kV及以下电压等级互感器的感应耐压试验;
中试控股考验交联橡塑电力电缆、电力变压器、GIS、互感器、绝缘子、发电机、开关等被试品绝缘承受各种过电压能力及容性负载的交流耐压试验。
步长可以实时调节,任意选择1V、2V、5V、10V
变压器进行局部放试验时,对测量的结果需要综合的分析和判断。首先判断放电信号的来源,是来自变压器内部还是外部,尽可能的排除和抑制干扰信号对局部放电测量的影响。
测量局部放电时干扰信号可分为两类:
试验回路未接通时产生的干扰,这类干扰在视品回路还未接通时就有:例如由于其它回路操作、整流子电机、附近高压无线电波、电焊,供电网络中可控硅等元件所引起,也包括测量仪器本身固有的噪音,这类干扰也可能发生在电源接上但零电压时。
试验回路通电时产生的干扰,仅在回路通电时产生,但不是有试品产生的这些干扰往往随电压增加而增加。它们可以包括例如:试验变压器中局部放电。高压引线的局部放电,套管中的局部放电,(如果不是检测对象的部件)或者邻近物体接地不良而产生的放电。干扰也可能有高压区域内连接不良引起,既有屏蔽和其他在试验时与屏蔽相连接的高压导体间的火花放电所引起。干扰也可能在测量仪器频带宽度内的试验电压高次谐波所引起的,干扰也可以来自低压电源侧局部放电或触头间的火花,这种干扰经试验变压器或其它联结进入测量回路。
5 变压器产生局部放电的几种典型结构及因素:
引线:变压器绝缘结构中,引线布置是很多的。引线与引线之间的电场分布是极不均匀的。两根半径相同的引线互相平行和垂直时其大电场强度均出现在两根引线表面处。相同条件下(忽略外包绝缘层)两根引线相互垂直比平等布置的大电场强度高出10%左右,高压绕组首端引出线对箱壁以及对其外部的调压绕组,也是电场集中易产生局部放电的区域。
端部绝缘机构:超高压电力变压器端部绝缘结构中通常在绕组端部防治静电环,一方面改善绕组冲击电压分布,另一方面作为屏蔽均匀端部电场。但静电环与端圈间形成的楔形油隙(亦称油楔)为电场集中区域。"油楔"与大电场强度与绕组主绝缘距离,端部绝缘距离,静电环曲率半径及绝缘厚度有关。
变压器中突出的金属电极表面,如油箱内壁的焊接缝及附着在其上的焊渣,引线焊接时留下的尖角毛刺。铁心柱边角基铁心片剪切时形成的毛刺等。均会造成电场集中,是场强成倍增加,(不论电极是带电还是接地)。对在制造过程中形成的尖角毛刺进行磨光处理。
杂质:在变压器绝缘结构中与低压板相比油的介点常数低。在复合绝缘结构中,油所承受的电场较高,而三种绝缘材料中油的击穿场强是低的,这决定了变压器绝缘中薄部分是油隙,油中含有杂质如金属和非金属颗粒、含水量、含气量等,会使油中电场发生畸变。
变压器局部放电绝大多数是在高电压高电场部位产生,可以根据局放观测到的放电图谱、放电的起始电压和熄灭电压放电量随时间的变化这些特征来判断放电性质。可以使用电气定位法判断产生局部放电的电气位置。
6 变压器局部放电试验接线方式
局部放电试验时被试绕组中的中性点端子应接地,如为三角形连接应将其一端子接地,一台三相变压器,用单相连接的方式逐相的将电压加在线端进行试验。中试控股技术博士为您解答:建筑电力用户通常采用的中小型电力变压器,他需要一个长期稳定的运行环境,正确维护电力变压器,对提高电力用户的供电可靠性具有很深远的意义。电缆识别仪是一小型化手提式,紧凑型仪器,装在铝合金箱内,由一个信号发生器,一个带传感器的接收机及连线构成。
要想正确有效的维护电力变压器正常运行,除掌握变压器的理论知识外,对运行中变压器经常出现的异常情况及故障也应具有准确的分析判断能力,从而为故障的预防和处理提供准确的依据。
快速跳转