
首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:多倍频测试仪(实力大厂)
ZSDBF-15KVA 多倍频感应耐压试验装置
触摸方式调节电压可实现本装置的多倍频试验电压输出
参考标准:DL/T 848.4-2004
多倍频感应耐压试验装置:多倍频感应耐压试验装置实现各种被试品的预防性交流耐压试验和交接性交流耐压试验,中试控股满足35kV及以下电压等级互感器的感应耐压试验我中试控股的感应耐压试验装置采用微机控制
中试控股结合先进的变频及高速采样技术设计制造,比传统的三倍频发生器效率高,输出电压稳定,测量精度高,重复性好,并且可以实现自动升压、升压至设定值后自动计时、计时完成后自动降压的功能,操作极其简单。
仪器采用背光式大屏幕液晶显示,全中文操作界面,带实时时钟和微型打印机。仪器采用一体化结构,重量轻,便于携带。
ZSDF多倍频电源试验装置输出即为正弦波,波形失真度小,波形畸变率 <3%。不同于其他类型的变频电源装置,脉宽调制型变频电源输出为方波,输出经过波形整形而成的正弦波。多倍频电源试验装置体积小,波形好,装配方便,操作简便。
多倍频电源试验装置的核心组件——变频电源柜采用高性能微处理器控制,全中文菜单显示,具有自动化程度高,保护迅速可靠,人机界面友好等优点。多倍频电源试验装置虽安装操作简便,但误操作仍会引起意外事故。因此在使用前请务必仔细阅读本使用说明,以免对被试品及试验装置造成不必要的损坏。
对PT进行感应耐压试验可以帮助工作人员及时发现问题,避免造成更严重的后果。中试高测生产的ZSDF-10型多倍频感应耐压试验装置采用微机控制,运用数字波形合成技术及现代电力电子技术设计制造,比传统的三倍频发生器工作效率高,输出电压稳定,测量精度高,重复性好。
对变压器进行感应耐压试验,一般有两个目的:一是检查全绝缘变压器的纵绝缘(绕组层间、匝间及段间);二是检查分级绝缘变压器主绝缘和纵绝缘(主绝缘指的是绕组对地、相间及不同电压等级绕组间的绝缘)。
在进行该项试验时,一般选用三倍频(或多倍频)感应耐压试验装置来进行试验。
但是电力系统运行调试单位一般不配备正弦波的变频电源,而是利用现场设备组合而成。那么如何组合这些设备,获取试验中的倍频电源,一直困扰试验人员的一大问题。下面,中试控股技术部结合多年的实战经验,为大家总结两种获取倍频电源的方法,仅供大家参考。
利用两台电动机组取得倍频电源
异步倍频发生器示意图
Q——启动器;M1——鼠笼电动机;M2——绕线式电动机;
TR——调压器 ;T——升压变压器(其中C相反接,使三相电压矢量相加);
FY——利用变压器高压套管电容构成的分压测量系统
用一台三相异步鼠笼电动机,驱动一台三相转子为绕线式的异步电动机,如上图
所示。先启动鼠笼式电动机M1至额定转速,然后用与鼠笼式电动机相序相反的三相电
源,经调压器TR对绕线式异步电动机M1定子励磁,便在定于中产生与其转子旋转方向
相反的旋转磁场。由于驱动绕线式电动机转子的速度与旋转磁场的速度接近,但旋转方向
相反,于是便在绕线式转子绕组中感应出两倍于系统频率的电压,其数值大小可由调压器
调整定子励磁电压而定。该电机输出的倍频电压,经升压后便可作100Hz的两倍工频电
源,进行变压器的感应耐压试验。但在起动过程中,必须先启动鼠笼式电动机,再合上调
压器,由零逐渐升压,反之,则可能使联接靠背轮扭断。
ZSDBF-15KVA 多倍频感应耐压试验装置技术指标
工作条件 环境温度:-10℃~50℃ 相对湿度:30%~90%
供电电源 三相AC380V±10%或AC220±10% 50 Hz±5 Hz
如用AC220供电,功率减半
输出频率 30Hz~200Hz 调节细度0.1 Hz
输出电压 0~400V正弦波
输出功率 15KW
最大输出电压 400V
最大输出电流 35A
电压最小分辨率 0.01V
电流最小分辨率 0.001A
电压电流精度 ±1%
外形尺寸(mm) 570(长)×400(宽)×350(高)
中试控股仪器重量 约44kg
现在感应耐压试验装置(别称多倍频感应耐压测试仪)也被使用到很多不同的行业之中,并且也发挥着非常重要的作用,因此很多人在购买时也会说感应耐压试验装置被广泛使用的原因是什么?
它的方式非常简单,将传统的耐压试验装置安装好了之后还需要自动输入数据,并且也需要对其进行调试才能够达到一个非常好的使用结果,但是采购的感应耐压实验装置之后就能够节约很多的时间。
因为它是感应装置能够通过自己系统的功能,对所有的数据进行检测,并且在检测中也能够达到一个非常高的标准,让大家去解决设备的耐压问题时也能够找到一个比较好的方法。因为知道了设备的具体问题之后再去参考分析方法的可行性就会比较简单,所以现在很多的行业在选择一种耐压实验装置时都会选择感应耐压试验装置。
多倍频感应耐压试验装置实现各种被试品的预防性交流耐压试验和交接性交流耐压试验,中试控股满足35kV及以下电压等级互感器的感应耐压试验;
中试控股考验交联橡塑电力电缆、电力变压器、GIS、互感器、绝缘子、发电机、开关等被试品绝缘承受各种过电压能力及容性负载的交流耐压试验。
步长可以实时调节,任意选择1V、2V、5V、10V
电压互感器(PT)是电力系统中的关键设备,绝缘缺陷,如匝、层间短路,支架放电和铁芯穿芯螺丝悬浮放电等现象会严重影响设备的正常运行,甚至会发生十分危险的爆炸现象。
阻抗法是通过测量工频电压下变压器绕组的短路阻抗或漏抗来反映绕组的变形和移位及匝间开路和短路等缺陷。漏抗实质上是散布在变压器绕组与绕组之间,绕组内部及绕组与油箱之间的漏磁通形成的感应磁势的反映,因此对漏磁磁路的变化比较灵敏;短路阻抗则是漏抗和绕组电阻的平方和开方。由于一般大型变压器绕组电阻比漏抗要小很多,因此阻抗可以反映漏抗的变化,而且,测量阻抗比测漏抗易于实现。在现场测试中,建议在低电压下实施阻抗测量,电压根据被测变压器容量的大小一般取几百V,为避开铁芯非线性的影响,所加电流应>2A。被测变压器低压侧短路,高压侧施压,测量接线如图1所示(以两绕组变压器为例)。
当所加电源的频率逐步增高时,变压器绕组分布参数的特性逐渐体现出来。实质上,变压器绕组在高频下是一个由分布电感和电容构成的线性无源两端网络,如图2所示。图中,Ls为线匝自感;M为匝间互感;Cs为匝间电容;Cg为线匝对地电容(忽略了损耗因素)。
频响法即是从绕组一端对地注入扫频信号源,测量绕组两端的端口特性参数,如输入阻抗、输出阻抗、电压传输比和电流传输比的频域函数。通过分析端口参数的频域图谱特性,判断绕组的结构特征。如果绕组发生变形,就会使绕组的分布电容和电感改变,反映到端口参数的频谱发生变化。为了简化,通常只测量一种端口参数。电压传输比反映了等效网络的衰减特性,是常测的参数之一[1],测量接线实现如图3所示。入端施加正弦扫频电压信号Ui,并测量输出电流在采样电阻R上的压降U0,并计算U0/Ui,得到传输比随频率变化的图谱。如果输出电流I0很小,U0也很小,则U0/Ui很小,表明绕组内部发生了并联谐振,频谱曲线上出现频谷;反之,则表明发生串联谐振,频谱曲线上出现频峰。理论计算表明,在频峰处,绕组上的驻波分布将呈现为整个半正弦波的分布;而在频谷处,驻波呈现为奇数个1/4正弦波分布。
显然,绕组的结构、大小、位置和引线不同,频峰和频谷的位置和高低也不同,频谱也就不同,因此,不同绕组的频谱图谱肯定不同。但是,对于同类型的变压器绕组,由于绕组结构的类似性,其测到的频谱曲线必然有可比性。可用来帮助判断和确定绕组的变形故障。
2 变压器绕组变形故障模拟研究
选取1台变压器进行变形故障的模拟试验研究,一种是局部的匝间压缩,即轴向压缩变形;一种是局部凹坑,属幅向变形。并分别采用阻抗法和频响法对两种变形进行测量,目的是比较两种方法对不同变形故障的灵敏性和有效性。变压器为三相两绕组,所测绕组为连续式。测试均在变压器吊罩后进行,测试结果见表1。
测试方法为:
——阻抗法测低压短路阻抗;
——电桥法测绕组漏感;
——BRTC变压器绕组特征测试仪(即频响测试仪)测绕组频谱。
1) 测试工况1
变形前,测录低压短路阻抗,漏感和高压三相绕组频谱曲线,如图4所示。
阻抗及电感测试工况1测试工况2测试工况3
C相短路阻抗/%8.088.086.96
阻抗变化率*/%/没有变化-13.86
C相漏感/H0.01930.01940.0168
漏感变化率*/%/0.52-12.95
2) 测试工况2
轴向局部变形。在C相高压线圈顶部抽掉匝间垫块(见图5中的标示圈),压紧头5匝线圈。高压绕组共80匝,因此,可认为有5%的变形。测录低压短路阻抗,漏感和高压三相绕组频谱曲线(见图6)。
25-2.gif (10814 bytes)
24-0.gif (5452 bytes)
3) 测试工况3
幅向变形。在C相高压线圈底部用力敲两处,凹坑深达1 cm左右(见图7中的标示圈),测录低压短路阻抗,漏感和高压三相绕组频谱曲线(见图8)。
针对上述3种测试工况分析为:
a) 轴向变形后C相的频谱曲线在第4个频峰发生了较明显的改变(箭头指处),频峰向高频方向偏移约40 kHz,幅值变化约4 dB,A和B相的频谱基本不变。偏移频峰位于300~400 kHz的中高频域。根据频率谐振峰与变形面积的关系,第1个频峰发生改变,说明有整体变形;第4个频峰发生改变,说明线圈可能存在1/4面积以下的局部变形;频峰向高频方向偏移,说明部分分布电感减小或分布电容减小。
b) 幅向变形对频谱曲线的影响颇为显著。第1个频峰向高频方向偏移约6 kHz,表明整体电感有较明显的变化;中频域的频峰向中部发生大面积的挤压,说明局部的变形相当显著(箭头指处),导致了整体特性的变化。
c) 阻抗法对影响整体电感的变形较为灵敏,如幅向变形、轴向扭曲、匝间开路、短路等,但对匝、饼间的局部拉伸压缩,线圈整体位移,分接开关触头烧蚀等不灵敏。频响法对影响线圈电容和电感的变形都很灵敏,因此后者具有显著的优越性。当然,阻抗法在长期的生产实践中已建立严格的规范和标准,便于实施,易于判断。建议在实际运用中,灵活结合两种方法,作出准确的分析和判断。
3 阻抗法和频响法分析实例解析
以变压器型号SFPSZ3—180 000/220,231/38.5/15.75为例,变压器低压出口侧发生对地闪络。常规试验项目检测发现:C2H2偏高,示内部有高能量放电;直流电阻测试表明低压绕组b相偏大2倍,有断股发生;低压短路阻抗测试发现高压加压,低压短路,测量短路阻抗发现b相相对其它相变化12.38%;低压加压,中压短路,测量短路阻抗发现b相相对其它相变化-18.68%;高压加压,中压短路,测量短路阻抗发现b相相对其它相变化-2.22%,说明漏感有较大变化。为了确认哪相绕组发生变形及可能变形的部位和程度,对低压绕组进行了频响实测,如图9所示。
图谱分析表明,a相和c相频谱曲线严格吻合,b相频谱第一个频峰左移约4 kHz(箭头指处),说明整体电感增大,与阻抗法的判断相符。中高频段频响幅值略有升高,频峰向高频方向略有偏移(箭头指处),说明分布电感略有减小,对地电容可能改变,判断可能性较大的是幅向变形。因此诊断建议仅更换b相线圈。
后更换线圈解体发现,线圈由两根铜线并绕,共3段,每段22匝,线圈受力向内收缩,导致幅向扭曲,有一凸缘挤出约20 cm,61~62匝处开路有数股。更换b相线圈后复测低压绕组三相频谱如图10所示,基本吻合。
a.频谱测试技术的应用为电力变压器绕组变形的不解体检测和诊断提供了新的思路和方法。
b.模拟变压器的试验研究表明,频响法测试诊断变压器绕组变形比阻抗和漏抗法更为灵敏,能反映出影响绕组整体电感及对整体电感影响不大的变形,同时包含了变形故障类型、程度、部位等多种信息。阻抗法只能反映对绕组整体电感影响较大的变形,但由于长期的应用趋于成熟,并有标准可循。
c.频谱的分析诊断技术目前仍停留在物理概念分析和测试实践经验的总结上,有待诊断理论上的突破。一般而言,低频段频率谐振峰的改变表明线圈有整体变形,中频段谐振峰的改变表明有局部变形,而高频段的变化表明线圈引线位置变化或整体位移。但更多的情形是复合变形。因此,在现场测试诊断时,建议综合应用阻抗法和频响法,并参考相关的试验数据,以作出迅速而准确全面的分析和判断。1 概述
变压器的零序电流保护、变压器间隙电流保护与变压器零序电压保护一起构成了反应零序故障分量的变压器零序保护,是变压器后备保护中的重要组成部分,同时也是整个电网接地保护中不可分割的一部分。中试控股进行本文介绍变压器的零序电流保护的一些特点。
2 零序电流互感器安装位置对保护的影响
零序电流的产生,对保护所体现的故障范围会有很大的影响(对于自耦变压器,零序电流只能由变压器断路器安装处零序电流互感器产生,本文不做讨论)。下面按故障点的不同展开如下分析(见图1)
由上面的三种故障情况我们可以看到,变压器断路器处零序电流保护只能对安装处母线两侧的故障进行区分,变压器中性点处的零序电流保护只能对变压器高压侧与低 压侧故障进行区分。如果采用断路器处的零序电流保护,则与线路的零序保护概念上基本是相同的,只不过零序方向可以根据电流互感器的极性选择指向主变或指向 母线,指向母线则保护的范围只是断路器电流互感器安装处开始,需与线路零序保护配合且范围较小;指向主变,则要同主变另一侧的出线接地保护相配合,比较麻 烦。如果采用主变中性点处的零序电流保护,则保护的范围比断路器处零序电流保护宽一些,同样根据主变中性点零序电流互感器的极性接线可以将中性点零序电流 保护分为指向本侧母线或对侧母线,一般采用指向本侧母线,整定配合较清晰方便。我局目前运行的都是主变中性点零序电流保护,断路器处零序电流保护只有在旁 路断路器带主变运行时才可能碰到,但如上面提到,对于主变其他侧有出线接地保护的因为整定配合的困难,此时旁路的零序电流保护宜退出,如为了对主变引线段 进行保护,也可对旁路零序电流保护段进行适当保留。
3 变压器中性点电流互感器极性试验
一 般情况下,零序功率方向要求做带负荷测试,但对于接于变压器中性点套管电流互感器的零序保护,其极性显然是无法用电流二次回路短接人为制造零序电流来检验 接线极性正确与否的,因而整组极性试验就显得极为重要。可以利用直接励磁冲击,在电流互感器线圈二次侧产生的直流响应,用直流毫安或微安表观察指针的摆动 来确定极性关系,具体做法见图2。
上一篇:感应测试仪(实力大厂)
下一篇:倍频感应测试仪(实力大厂)
快速跳转