
首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:交流输电线路参数测试装置
ZSXL-Z 输电线路异频参数测试仪(高配分体)
超强的抗感应电压能力
输电线路异频参数测试仪:随着电网的发展和线路走廊用地的紧张,同杆多回架设的情况越来越普遍,输电线路之间的耦合越来越紧密,在输电线路工频参数测试时干扰越来越强,严重影响测试的准确性和测试仪器设备的安全性
针对这一问题,我们开发了新一代输电线路异频参数测试系统,集成变频测试电源、精密测量模块、高速数字处理芯片及独有的国家专利技术抗感应电压电路;有效地消除强干扰的影响,保证仪器设备的安全,能极其方便、快速、准确地测量输电线路的工频参数。
主要技术参数
电力系统由发电厂(发电机、升压变)、220-500kV高压输电线路、区域变电站(降压变压器)、35-110kV高压配电线路(用户、降压变压器)和6-10kV配电线路以及220V380V低压配电线路组成。
其中高压输电线路、低压配电线路是连接发电、供电、用电之间的桥梁,极其重要!
输电线路工频参数包含线路的正序电容、零序电容、正序阻抗、零序阻抗、线路间的互感电抗和耦合电容测量;
一体化结构,体积小、重量轻
参考标准: DL/T 741-2010
1使用条件 -20℃~50℃ RH<80%
2抗干扰原理 变频法
3电 源 AC 220V±10% 发电机≧3KW
4电源输出 最大输出电压 AC250V
电压精度 0.5%
电流精度 0.5%
最大输出电流 8A
输出频率 45Hz、55Hz
5测量范围 电容 0.01~30μF
阻抗 0.01~400Ω
阻抗角 -180°~+180°
6测量分辨率 电容 0.0001μF
阻抗 0.0001Ω
阻抗角 0.0001°
7测量准确度 电容: ≥1μF时,±1%读数±0.01μF;
<1μF时,±2%读数±0.01μF;
电阻: ≥1Ω时,±1%读数±0.01Ω;
<1Ω时,±2%读数±0.01Ω;
阻抗角: ±0.2°(电压>1.0V);
±0.3°(电压:0.2V~1.0V);
8抗干扰电流 30A
9抗感应电压 10KV
10外型尺寸 550(L)×430(W)×530(H)
11存储器大小 200 组 支持U盘数据存储
12重 量 60 Kg
使用说明
4.1、主菜单
确定仪器地线接入良好,再接入AC220V电源把电源开关合上,即显示主菜单界面(如图 4—1)。八个菜单的显示,每一个项目都有一个独立的显示区域,用户只需在相应的项目上面轻轻触碰一下就可以轻松的进入下一级具体操作菜单,整个过简单明了。省去了繁琐的按键操作。
4.2、线路设置
首先从主界面进入线路长度设置界面(如图4—2);整个设置项共有12个模拟按键,其中,右边两个是保存和退出按键,下面是0-9的数字键,点线路长度输入框,然后,点需要的数字设置即可。若是输入错误,重复操作,确定正确,点<保存>键保存退出。
4.3、项目测试
主界面(如图 4—1)八个菜单的显示项目一目了然,分别是阻抗测试、线路互感、电容测试、耦合电容、和参数校验。用户在根据接线提示正确接好仪器外部接线的情况下,只需点一下相应的项目就能进入下一级开始测试菜单(
干扰检测完成后仪器立即启动变频输出装置;首先变频到45Hz使输出端快速平缓地输出至200伏电压或者4安培电流,整个过程仪器内部均采用实时监控的手段,保证输出的稳定可靠。升压或升流成功后,保持200伏电压或4安培电流然后进行45Hz(如图4—5和图4—8)环境下的检测分析;当45Hz检测分析完成后,仪器自动变频到55Hz,进行55Hz(如图4—6和图4—9)环境下的检测分析;最后经过仪器内部中央处理器的高精度处理,得出并显示各项测试结果及数据,测试结果(如图4—7和图4—10),数据是显示测试过程的数据,就是图4—4、图4—5、图4—6的数据显示在一起,用户可以自行
选择查看并打印。整个测试过程的所有数据均是采取的实时检测并显示的方式,用户可以很直观的观察监视整个测试过程发生的变化。
零序阻抗、零序电容、耦合电容和线路互感的测试过程,与正序电容和正序阻抗过程一样,其中显示的数据只有B相,测试完成显示的结果与正序电容和正序阻抗一样,具体接线请查阅参考接线。
4.4、时间设置
从主菜单上的“时间设置”小方格直接进入时间设置子菜单(如图4—11)。如图所示4个模拟按键设置分别对应加、减、保存和退出;点要修正的日期和时间,然后,点加减键修改。用户调整完成后按保存键即可保存退出。
图 4—11
4.5、历史数据
※数据查询
打开仪器从主界面下方“历史数据”方格进入到下级操作菜单(如图4—12),点击第一项“数据查询”即可进入查询界面(如图4—13)。从第零组到第一九十九组一共两百组数据可供用户查阅;分页显示,每一页显示十个测试项目,每一组显示日期、时间和具体项目名称,用户能非常清楚了查阅自己想看的数据结果。在想查阅的数据一栏上面轻轻触碰一下就能顺利的进入详细的数据结果查看,并且可以自行选择打印。
※ U盘备份
进入“历史数据”选项后,可以看到如图4—12显示界面,用户轻轻按下“U盘备份”那一栏,即可进入U盘操作界(如图4—14)。按照屏幕上的提示,用户只需把U盘插入仪器面板右下方的USB插口即可出现数据传输的界面(如图4—14)一共传递了多少组数据一目了然,非常方便。用户需要特别注意的是,在此过程中U盘是处在高速读写状态,是不允许中途拔出U盘或者仪器断电的情况的,严重的话可以导致U盘烧毁。等到数据传输完毕,显示器上出现“文件保存成功”的提示信息后才可以拔出U盘。
U盘数据格式是TXT。
图4—14
4.6、参数校验
打开仪器从主界面右下方“参数校验”方格进入到密码输入菜单页,此密码用于送检部门输入,输入正确进入下级操作菜单(如图4—15),接上测试线,接入假负载,才可以点击启动,再点击升压或者降压和设置频率,就是手动调节输出,检验数据的真实性。
使用客户请勿随便进入启动设置,以免操作不正确损坏仪器。因此参数校验密码一般都不提供给使用客户,只提供给送检部门使用。
五 参考接线
测试开始前,将测量端的线路挂上接地线或合上地刀可靠接入大地,并将面板左上角的仪器接地端子可靠接入大地,将测试电源输出端子IA、IB、IC连接到线路测量引下线(粗线),最后,将电压测量端子UA、UB、UC接入线路引下线(细线)。仪器测试接线确认接好完成后,再取下接地线或分开地刀的接地,以保证设备和操作人员的安全。黄、绿、红三色测试线尽量悬空,以免感应高压放电击穿测试线!
(1)短路故障电流冲击,绕组承受短路能力不够。
(2)在运输或安装过程中受到冲撞。
(3)保护区域有死区,动作失灵。
如某主变压器,因10V系统故障导致直流消失,保护系统动作失灵,由于手动操作跳闸,电力变压器因长时间短路作用而损坏。
减少电力变压器发生绕组变形的措施是什么?
答:减少电力变压器发生绕组变形的措施是:
(1)加强对变压器短路能力的试验研究。
(2)正确选择绕组的压紧力。压力过小受到冲击的时候会变形,压力过大结构本体会变形。
(3)器身可靠定位。
(4)改善短路保护系统,注意重合闸问题。
(5)加强监测和及时检修。前言:根据《电力设备交接和预防性试验规程》规定的试验项目及试验顺序,主要包括油中溶解气体分析、绕组绝缘电阻的测量、绕组直流电阻的测量、介质损耗因数tgD检测、交流耐压试验、线圈变形试验、局部放电测量等。
?
1.油中溶解气体分析
中试控股电力讲解在变压器诊断中,单靠电气试验方法往往很难发现某些局部故障和发热缺陷,而通过变压器油中气体的色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效,这已为大量故障诊断的实践所证明。油色谱分析的原理是基于任何一种特定的烃类气体的产生速率随温度而变化,在特定温度下,往往有某一种气体的产气率会出现最大值;随着温度升高,产气率最大的气体依此为CH4、C2H6、C2H4、C2H2。这也证明在故障温度与溶解气体含量之间存在着对应的关系,而局部过热、电晕和电弧是导致油浸纸绝缘中产生故障特征气体的主要原因。变压器在正常运行状态下,由于油和固体绝缘会逐渐老化,变质,并分解出极少量的气体(主要包括氢H2 甲烷CH4 乙烯C2H4 乙炔C2H2 一氧化碳CO 二氧化碳CO2等多种气体)。中试控股电力讲解当变压器内部发生过热性故障,放电性故障或内部绝缘受潮时,这些气体的含量会迅速增加。这些气体大部分溶解在绝缘油中, 少部分上升至绝缘油的表面,并进入气体继电器。电力变压器的内部故障主要有过热性故障、放电性故障及绝缘受潮等多种类型。据有关资料介绍,在对故障变压器的统计表明::过热性故障占63%;高能量放电故障占18. 1%;过热兼高能量放电故障占10%;火花放电故障占7%;受潮或局部放电故障占1. 9%。而在过热性故障中, 分接开关接触不良占50%;铁芯多点接地和局部短路或漏磁环流约占33%;导线过热和接头不良或紧固件松动引起过热约占14. 4%;其余2. 1% 为其他故障。
对变压器故障部位的准确判断,有赖于对其内部结构和运行状态的全面掌握,并结合历年色谱数据和其它预防性试验(直阻、绝缘、变比、泄漏、空载等) 进行比较。
2.绕组直流电阻的测量
中试控股电力讲解它是一项方便而有效的考察绕组绝缘和电流回路连接状况的试验,能反应绕组焊接质量、绕组匝间短路、绕组断股或引出线折断、分接开关及导线接触不良等故障,实际上它也是判断各相绕组直流电阻是否平衡、调压开关档是否正确的有效手段。如在对某变压器低压侧10KV 线间直流电阻作试验时,发现不平衡率为2. 17% ,超过部颁标准值1% 的一倍还多,色谱分析不存在过热故障,且每年预试数据反映直流电阻不平衡系数超标外,其它项目均正常,经分析换算后确定C 相电阻值较大,判断C 相绕组内有断股问题,经吊罩检查后,验证C 相确实有一股开断,避免了故障的进一步扩大。
3.绕组绝缘电阻的测量
绕组连同套管一起的绝缘电阻和吸收比或极化指数,对变压器整体的绝缘状况具有较高灵敏度,它能有效检查出变压器绝缘整体受潮、部件表面受潮或脏污以及贯穿性的集中缺陷,如各种贯穿性短路、瓷件破裂、引线接壳、器身内有铜线搭桥等现象引起的半贯通性或金属性短路等。相对来讲,单纯依靠绝缘电阻绝对值大小对绕组绝缘作判断,其灵敏度、有效性较低。一方面是由于测量时试验电压太低,难以暴露缺陷,另一方面也因为绝缘电阻与绕组绝缘结构尺寸、绝缘材料的品种、绕组温度有关,但对于铁芯夹件、穿心螺栓等部件,测量绝缘电阻往往能反映故障,这是因为这些部件绝缘结构较简单,绝缘介质单一。
4.测量介质损耗因数tgD
它主要用来检查变压器整体受潮油质劣化、绕组上附着油泥及严重的局部缺陷。介质测量常受表面泄露和外界条件(如干扰电场和大气条件) 的影响,因而要采取措施减少和消除影响。现场我们一般测量的是连同套管一起的tgD,但为了提高测量的准确和检出缺陷的灵敏度,有时也进行分解试验,以判断缺陷所在位置。测量泄漏电流和测量绝缘电阻相似,只是其灵敏度较高,能有效发现有些其他试验项目所不能发现的变压器局部缺陷。泄漏电流值与变压器的绝缘结构、温度等因素有关,在《电力设备交接和预防性试验规程》中不作规定,只在判断时强调比较,与历年数据相比,与同类型变压器数据相比,与经验数据相比较等。介质损耗因数tgD和泄漏电流试验的有效性正随着变压器电压等级的提高、容量和体积的增大而下降, 因此单纯靠tgD和泄漏电流来判断绕组绝缘状况的可能性也比较小,这主要也是因为两项试验的试验电压太低,绝缘缺陷难以充分暴露。对于电容性设备,实践证明如电容型套管、电容式电压互感器、耦合电容器等,测量tgD和电容量CX 仍是故障诊断的有效手段。
5.交流耐压试验
中试控股电力讲解它是鉴定绝缘强度等有效的方法,特别是对考核主绝缘的局部缺陷,如绕组主绝缘受潮、开裂或在运输过程中引起的绕组松动、引线距离不够以及绕组绝缘上附着污物等。交流耐压试验虽对发现绝缘缺陷有效,但受试验条件限制, 要进行35KV 及8000KVA 以上变压器耐压试验, 由于电容电流较大,要求高电压试验变压器的额定电流在100mA 以上,目前这样的高电压试验变压器及调压器尚不够普遍, 如果能对高电压、大电流电力变压器进行交流耐压试验,对保证变压器安全运行有很大意义。
6.中试控股电力讲解线圈变形检测
变压器绕组变形是指在电动力和机械力的作用下,绕组的尺寸或形状发生不可逆的变化,包括轴向和径向尺寸的变化、器身转移、绕组扭曲、鼓包和匝间短路等。绕组变形是电力系统安全运行的一大隐患,一旦绕组变形而未被诊断继续投入运行则极可能导致事故,严重时烧毁线圈。造成变压器绕组变形的主要原因有:
6. 1 短路故障电流冲击,电动力使绕组容易破坏或变形。电动力的产生是绕组中的短路冲击电流与漏磁相互作用的结果,在运行中,由于辐向和轴向电动力同时作用,可能使整个绕组发生扭转。
6. 2 在运输或安装中受到意外冲撞、颠簸和震动等。如某供电部门在对35KV、20000KVA 主变压器运输途中,遭受强烈撞击。事后在对该变压器交接吊罩检查时,发现油箱下部固定器身的4 个螺栓全部开焊裂断,上部对器身定位的4 个定位钉全部松动,并在定位板上划出小槽。器身向油枕方向纵向位移11mm,横向位移23mm ,绕组对端圈错位,最大达30mm,可看到器身已经完全没有固定装置而处于自由状态,并经过长途运输及多次编组,器身在油箱中摇晃, 必然造成变压器损坏。
6. 3 保护系统有死区,动作失灵,导致变压器承受稳定短路电流作用时间长,造成绕组变形。
结语:在变压器计划检修或故障诊断中,预防性试验结果依旧是不可缺少的诊断参量。每个预防性试验项目根据电力设备试验规程规定,100kVA以下的变压器接地点接地电阻不大于10Ω,100kVA以上的变压器接地点接地电阻不大于4Ω。但由于设计施工技术的过失或外力的破坏,常常导致变压器接地点接地电阻升高和接地线断线故障发生,造成供电异常,用户电器设备烧毁,给供电单位的运行管理带来一定困难。中试控股电力讲解为此我们必须采取一定的措施,预防变压器中性线与接地线断线和接地电阻升高造成的危害。
?
上一篇:输电线路正序电容阻抗测试装置
下一篇:输电线路缺陷测试装置
快速跳转