
首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:架空输电线路参数测试系统
ZSXL-Y输电线路异频参数测试系统
测量线路间互感和耦合电容(线路直阻采用专门的线路直阻仪进行测量)
输电线路异频参数测试系统:集成异频测试电源、测量仪表、数学模型于一体,消除强干扰的影响,保证仪器设备的安全,能极其方便快速、准确地测量输电线路的工频参数。输电线路是用变压器将发电机发出的电能升压后,再经断路器等控制设备接入输电线路来实现。结构形式,输电线路分为架空输电线路和电缆线路。输电线路试验为离线检测和在线检测,运用带电作业或其他作业方式对杆塔本体、基础、架空导地线、绝缘子、金具及接地装置等的运行状态进行检测,可以对线路运行状态及可靠性提供评估依据,对线路状态检修提供可靠的分析数据,对线路事故、故障的原因进行分析判断及提前防范的作用。
参数
输电线路的常见问题及维护对策
第二是在冰冻期到来以前,对线路上所有的电杆进行不要的检查,并针对出现的问题进行维护;第三是在施工以前检查电杆的质量;第四是在积水冰冻以前及时的清理,并保证水流的畅通。
最后在特殊天气时增强对线路的巡检工作,并在巡检是注意导线连接处的受热问题。
第四是增强线路的绝缘性,并装置自动重合闸。
其次应该严格的规范接地操作的规范性,做好自我防护工作;最后应该做好杆塔工作的监护工作,保证维护工作的有效性
电力系统由发电厂(发电机、升压变)、220-500kV高压输电线路、区域变电站(降压变压器)、35-110kV高压配电线路(用户、降压变压器)和6-10kV配电线路以及220V380V低压配电线路组成。
其中高压输电线路、低压配电线路是连接发电、供电、用电之间的桥梁,极其重要!
输电线路工频参数包含线路的正序电容、零序电容、正序阻抗、零序阻抗、线路间的互感电抗和耦合电容测量;
新建高压输电线路再投入运行之前,除了检查线路绝缘情况、核对相位外,还应测量各种工频参数值,作为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作的实际依据。
本文为大家详细介绍工频线路一些参数的测量方法。注:本文讨论的线路参数均指三相导线的平均值,即按三相线路通过换位后获得完全对称。对不换位线路,因其不对程度较小,也可以近似地试用。
一测量线路各相的绝缘电阻
测量绝缘电阻,是为了检查线路绝缘状况,以及有无接地或相间短路等缺陷。一般应在沿线天气良好情况下(不能在雷雨天气)进行测量。首先将被测线路三相对地短接,以释放线路电容积累的静电荷,从而保证人身和设备安全。
测量时,应拆除三相对地的短路接地线,然后测量各相对地是否还有感应电压(测量表计用高内阻电压表,好用静电电压表),若还有感应电压,应采取措施消除,以保证测试工作的安全和测量结果的准确。
测量线路的绝缘电阻时,应确知线路上无人工作,并得到现场指挥允许工作的命令后,将非测量的两相短路接地,用2500 - 5000V兆欧表,轮流测量每一相对其他两相及地间的绝缘电阻。若线路长,电容量较大时,应在读取绝缘电阻值后,先拆去接于兆欧表L端子上的测量导线,再停兆欧表,以免反充电损坏兆欧表。测量结束后应对线路进行放电。测量线路各相绝缘电阻接线图如图1所示。
核对相位
通常对新建线路,应核对其两端相位是否一致,以免由于线路两侧相位不一致,在投入运行时造成短路事故。
核对相位的方法很多,一般用兆欧表和指示灯法。指示灯法又分干电池和工频低压电源两种。
1.兆欧表法
图2是用兆欧表核对相位的接线图。
用兆欧表核对相位接线图
图2:用兆欧表核对相位接线图
在线路的始端一相接兆欧表的L端,而兆欧表的E端接地,在线路末端逐相接地测量;若兆欧表的指示为零,则表示末端接地相与始端测量相同属于一相。按此方法,定出线路始、末两端的A、B、C相。
2.指示灯法
指示灯法是将图2中兆欧表换成电源和和指示灯串联测量,若指示灯亮.则表示始、末两端同属于一相,但应注意感应电压的影响,以免造成误判断。
测量直流电阻
测量直流电阻是为了检查输电线路的连接情况和导线质量是否符合要求。
根据线路的长度、导线的型号和截面,初步估计线路电阻值,以便选择适当的测量方法和电源电压。一般采用较简单的电流、电压表法测量,尤其对有感应电压的线路更为必要。此外,也可用单臂电桥测量。电流电压表法常用来测量较长的线路,电源可直接用变电所内的蓄电池。但要注意,不能影响开关和继电保护可靠动作。
测量时,先将线路始端接地,然后末端三相短路。短路连接应牢靠,短路线要有足够的截面。待始端测量接线接好后,拆除始端的接地进行测量,原理接线如图3所示。
电流电压表法测量线路直流电阻接线图
图3:电流电压表法测量线路直流电阻接线图
PA—直流电流表;PV—直流电压表
逐次测量AB、BC和CA相,井记录电压值、电流值和当时线路两端气温。连续测量三次,取其算术平均值,并由以下各式计算每两相导线的串联电阻(如果用电桥测量,能直接测出两相导线的串联电阻值)。
AB相 RAB=UAB/IAB
BC相 RBC=UBC/IBC
CA相 RCA=UCA/ICA
然后换算成20℃时的相电阻,换算方法如下
Ra=(RAB+RCA-RBC)/2
Rb=(RAB+TBC-RCA) /2
Rc=(RBC+RCA-RAB) /2
并按线路长度折算为每千米的电阻。
DSP数字信号处理器为内核
参考标准: DL/T 741-2010
仪器供电电源 三相,AC380V±10%,15A,50Hz (有效值)
仪器内部异频电源特性 最大输出电压 三相,0~200V(有效值<±1%)
最大输出电流 5A
输出频率 47.5Hz,52.5Hz (<±0.1HZ)
有功功率 功率因数在0.1~1.0时,±0.5%读数±1个字
有功功率 47.5Hz,52.5Hz (<±0.1HZ)
最大输出功率 三相3×3kW(9kW)
具备测量两相线路的功能(包括直流输电线路和电气化铁路牵引线路)
测量范围 电容 0.1~30μF
阻抗 0.1~400Ω
阻抗角 0°~360°
线路长度从0.3km到400km均应能够稳定准确测试
测量分辨率 电容 0.01μF
阻抗 0.01Ω
阻抗角 0.01°
测量准确度 电容 ≥1μF时,±1%读数±0.01μF
<1μF时,±3%读数±0.01μF
阻抗 ≥1Ω时,±1%读数±0.01Ω
<1Ω时,±3%读数±0.01Ω
阻抗角 测试条件:电流>0.1A
±0.3°(电压>1.0V),±0.5°(电压:0.2V~1.0V)
1.电杆积水冰冻
电杆积水冰冻主要是因为电杆积水,水分进入到电杆内部,冰冻以后膨胀对电杆造成破坏。在维护工作中应该做好四方面的工作:第一是在有可能积水的地段,做好封堵工作,或者将电杆外基封实;
2.倒杆塔
对于倒杆塔的维护工作,首先应该做好杆塔的管护工作,并且针对杆塔的出现的问题进行相应的调整,比如因质量问题要及时更换等;其次要对拉线进行必要的检查和维护工作,从而保证整个输电线路稳定的运行,同时及时的补全输电线路构件损失,稳定杆塔的受力;
3.雷击
雷击能够对输电线路造成巨大的直接和间接伤害,因此要加强在此方面的维护工作。其主要的维护策略分为四个方面:第一严格落实避雷线的架设,做好防雷基本工作;第二是降低杆塔的接地电阻,提高杆塔的抗雷击能力;第三是架设相应的耦合地线,以对雷击电流进行分流;
4.线路触电
线路触电给线路维护人员带来了生命威胁,因此应该对这方面的维护工作给予高度的重视。在实际维护工作中,首先应该保证维护人员进行作业时相关工具的绝缘性和作业活动的安全距离;
阻抗法建立在工频电气量的基础上,通过建立电压平衡方程,利用数值分析方法求解
得到故障点和测量点之间的电抗,由此可以推出故障的大致位置。根据所使用电气量的
不同,阻抗法分为单端法和双端法两种。
对于单端法,简单来说可以归结为迭代法和解二次方程法。迭代法可能出现伪根,也
有可能不收敛。解二次方程法虽然在原理和实质上都比迭代法优越,但仍然有伪根问题
。此外,在实际应用中单端阻抗法的精度不高,特别容易受到故障点过渡电阻、对侧系
统阻抗、负荷电流的影响。同时由于在计算过程中,算法往往是建立在一个或者几个假
设的基础之上,而这些假设常常与实际情况不一致,所以单端阻抗法存在无法消除的原
理性误差。但单端法也有其显著优点:原理简单、易于实用、设备投入低、不需要额外
的通讯设备。
双端法利用线路两端的电气信息量进行故障测距,以从原理上消除过渡电阻的影响。
通常双端法可以利用线路两端电流或两端电流、一端电压进行测距,也可以利用两端电
压和电流进行故障测距。理论上双端法不受故障类型和故障点过渡电阻的影响,有其优
越性。特别是近年来GPS设备和光纤设备的使用,为双端阻抗法的发展提供了技术上的
保障。双端法的缺点在于:计算量大、设备投资大、需要额外的同步和通讯设备。
故障录波分析法
故障录波分析法利用故障时记录得到的各种电气量,事后由技术人员进行综合分析,
得到故障位置。随着计算机技术和人工智能技术的发展,故障录波分析法可以通过自动
化设备快速完成。但该方法会受到系统阻抗和故障点过渡阻抗的影响,而导致故障测距
精度的下降。
行波法
行波法利用的原理是当输电线路发生故障时,将会产生向线路两端以接近光速传播的
电流和电压行波。通过分析故障行波包含的故障点信息,就可以计算出故障发生的位置
。下面中试控股详细介绍如何可以有效提高输电线缆故障查找的成功率?
如何组织事故巡视?如何尽快找到故障点?下面笔者就如何更有效地组织输电线路的故
障查找工作谈几点看法。
1详实准确的基础数据是故障定点的保障
为提高故障定位的准确性,110kV及以上变电站大部分都装有电力系统故障动态记录装
置即故障录波器,故障录波器的整定值要求其测距误差不大于5%(或2km)且无判相错误
,并能准确记录故障前后的电压、电流量,这给故障巡视提供了详实的第一手资料。而
装置提供资料的准确与否取决于以下4个方面:(1)装置的接线是否正确;(2)装置的定值
是否准确,这取决于线路参数的测量、定值的计算和定值的整定;(3)线路进行改造后是
否再次进行核相、测量线路参数、计算定值并进行整定;(4)线路跳闸后是否进行事故分
析并对装置的定值进行校核和调整,这一点是今后装置能否准确定位的关键。
110kV及以上线路大部分都装有微机保护,微机保护装置故障数据的准确率和故障量虽
然没有要求也没有故障录波器提供的多,但只要按照线路参数进行准确的定值计算和整
定,其测距定位数据也是非常重要的参考。
保护及自动装置测出的只是变电站到故障点的距离,并没有给出故障杆号,还需要在线
路台帐上做些工作,统计计算出每基杆塔距两侧变电站的距离,只有这样才能实现线路
故障点的快速准确定位。
输电线路的故障大部分都是单相故障,搞清线路的相位很重要,仅通过巡线前的相位交
代和在耐张杆、换位杆作相位标志的做法对巡线人员分清故障相是不实用的,在每基线
路杆号牌上制作相位标志的做法就比较好。这样,可以减少事故巡线人员1/2~2/3的工
作量。
有些线路故障往往是由缺陷发展演变而来的,
搞好缺陷的定性和记录也很重要。
2.全面细致的故障分析是故障定点的关键
.线路发生故障后,尽管到达故障点的时间越短,故障检出的成功率越高,但是,接到
调度命令后决不能盲目地立即巡线,而应一边召集必要的事故巡视人员做巡线的有关准
备,一边利用较短的时间收集索要事故数据并进行全面细致的故障分析。
摘要输电线路发生故障后,尽快查出故障点是降低故障损失、缩短线路故障停运时间的
关键。根据多年从事输电线路故障巡视组织工作经验的积累,结合故障特征的分析,总
结了一些实用的输电线路故障查找工作的组织程序和方法,对提高输电线路故障查找的
成功率起到了积极的作用。
如何组织事故巡视?如何尽快找到故障点?下面笔者就如何更有效地组织输电线路的故障
查找工作谈几点看法。
上一篇:输电线路杆塔参数测试系统
下一篇:高电压架空输电线路参数测试系统
快速跳转