
首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:输电线路故障测试装置(实力品牌)
ZSXL-Y输电线路异频参数测试系统
测量线路间互感和耦合电容(线路直阻采用专门的线路直阻仪进行测量)
输电线路异频参数测试系统:集成异频测试电源、测量仪表、数学模型于一体,消除强干扰的影响,保证仪器设备的安全,能极其方便快速、准确地测量输电线路的工频参数。输电线路是用变压器将发电机发出的电能升压后,再经断路器等控制设备接入输电线路来实现。结构形式,输电线路分为架空输电线路和电缆线路。输电线路试验为离线检测和在线检测,运用带电作业或其他作业方式对杆塔本体、基础、架空导地线、绝缘子、金具及接地装置等的运行状态进行检测,可以对线路运行状态及可靠性提供评估依据,对线路状态检修提供可靠的分析数据,对线路事故、故障的原因进行分析判断及提前防范的作用。
参数
输配电线路运行管理及维护方法
因此管理维护中容易出现故障,导致局部地区电力中断,影响居民的日常用电,下面就综合对这些问题进行分析,从中总结出有效的管理措施,提高我国的用电管理水平,为以后这方面技术的发展奠定基础。
如果在设计时不对这些影响因素加以考虑和分析,那么在日后的维护管理中肯定会面临很多问题。因此工作人员在日常维护工作中,一定要对设备缺陷进行记录,根据其受到破坏情况的不同,对受损情况做具体的分类,然后在后期进行审查;
将所有的安全隐患都排除掉,避免线路在运行中出现故障,造成局部的停电。
如果日常维护管理不到位,出现了长时间超负荷运行,那么就可能出现短路、线路中断、线路起火等问题,针对这些情况,要求工作人员在日常维护中,必须加大对电力设备的检查力度,对于发生过重大安全事故的设备,要做重点的检查,避免故障的再次发生。
第二,线路在正常运行时,如果在日常检查过程中,工作人员没有严格按照流程操作,对线路下生长的草木没有及时清理,对树木没有修整,就会出现短路甚至是跳闸故障;
第三,对于输配电线路而言,如果线路中的线对线平行度出现问题,导致各自线路的安全距离不够,在强电流作用下,就会出现打连火灾,直接影响用户的用电安全。
例如雷击比较严重,据不完全统计,雷击导致的线路问题占到12%,除此之外,雷雨、暴风雪也会有影响,这些自然因素是不能控制的,但是在设计中一定要安装避雷针,除此之外,相关的配套设施也要进行配置安装,将自然因素对线路的影响降到最低。
相关规程标准:
电力系统由发电厂(发电机、升压变)、220-500kV高压输电线路、区域变电站(降压变压器)、35-110kV高压配电线路(用户、降压变压器)和6-10kV配电线路以及220V380V低压配电线路组成。
其中高压输电线路、低压配电线路是连接发电、供电、用电之间的桥梁,极其重要!
输电线路工频参数包含线路的正序电容、零序电容、正序阻抗、零序阻抗、线路间的互感电抗和耦合电容测量;
DSP数字信号处理器为内核
参考标准: DL/T 741-2010
仪器供电电源 三相,AC380V±10%,15A,50Hz (有效值)
仪器内部异频电源特性 最大输出电压 三相,0~200V(有效值<±1%)
最大输出电流 5A
输出频率 47.5Hz,52.5Hz (<±0.1HZ)
有功功率 功率因数在0.1~1.0时,±0.5%读数±1个字
有功功率 47.5Hz,52.5Hz (<±0.1HZ)
最大输出功率 三相3×3kW(9kW)
具备测量两相线路的功能(包括直流输电线路和电气化铁路牵引线路)
测量范围 电容 0.1~30μF
阻抗 0.1~400Ω
阻抗角 0°~360°
线路长度从0.3km到400km均应能够稳定准确测试
测量分辨率 电容 0.01μF
阻抗 0.01Ω
阻抗角 0.01°
测量准确度 电容 ≥1μF时,±1%读数±0.01μF
<1μF时,±3%读数±0.01μF
阻抗 ≥1Ω时,±1%读数±0.01Ω
<1Ω时,±3%读数±0.01Ω
阻抗角 测试条件:电流>0.1A
±0.3°(电压>1.0V),±0.5°(电压:0.2V~1.0V)
保护功能护功能 仪器具有过流、过压、接地等保护功能。 仪器面板带有三相保险,过流过压都是通过保险保护仪器安全和操作人员安全(前提是按照高压试验安全操 作要求,将仪器大地端子可靠接地),不会烧坏仪器。
波形畸变率 正弦波,畸变率<2%。
绝缘性能、抗震性能 绝缘电阻(MΩ)
电源输入端 大于10 MΩ
电流输出端 大于10 MΩ
电压测量端 大于10 MΩ
耐压强度 1.5kV,1min,无击穿飞弧;满足长途、恶劣路面运输,试验室做0.5m跌落试验后能可靠稳定测试
抗干扰参数 抗干扰电流 线路首末两端短接接地时不小于50A。 能在仪器输出信号与干扰信号之比为1:10的条件下稳定准确完成测试。 具有二相线路工频参数测试的功能。
重量 主机65Kg
输电线路异频参数测试系统使用环境 使用环境:环境温度:-15℃~40℃;相对湿度:≤90%
外形尺寸 550*440*585mm3
重量 61kg
通过调查发现,当前在输配电线路运行管理中还存在很多问题,例如不同地区影响因素不同,受到天气、气候、地域、海拔的影响,以及经济的快速发展,用电需求急剧增加,再加上配电范围广、管理人员不足,在管理中不能进行细致化、集约化的管理;
输配电管理中面临的问题和难点
受到地理环境的影响
在对输配电线路进行管理和维护过程中,由于不同地区的地理环境,自然气候不同,因此管理和维护的重点也不同。我国地域辽阔,不仅有高原、高海拔地区,同时也有酷暑、苦寒等地区,这些地方的地理环境,天气情况都不同,直接影响输配电管理工作。
电能供应量加大
随着我国的改革开放,逐渐发展出了很多大中型城市,这些城市在发展中,以后后期的运行中,都依赖电源,再加上工商业的繁荣,我国对电能的需求量加大,这样对于供电企业而言,在这方面会面临很大的压力。
发生故障的主观原因
由于电力工程质量不合格,后期运行不到位,再加上整体规划设计不合理,导致故障频发。第一,出现短路问题,在山丘中安装输配电线路,如果树木和线路之间的安全距离没有控制好,那么二者就容易连接,经常发生短路故障;
对客观因素的分析
一般设计输电线路时,尽可能都远离城市中心和农村,这些地方是野外、郊区,因此在很大程度上会受到自然因素的影响。
《 DL/T 1119-2010 输电线路参数测试仪通用技术条件 》
《 110千伏及以上送变电基本建设工程启动验收规程 》
《 DL/T 559-94 220-500kV电网继电保护装置运行整定规程 》
《 GB 50150 - 2016 电气装置安装工程电气设备交接试验标准 》
1 设计方案
针对某地区110kV 输电线路复合绝缘子安装方式设计了4种并联间隙方案,包括3种直线
串方案和1种耐张串方案。直线串方案一参照已有运行经验的角形招弧角进行改动,保
留复合绝缘子原有的均压环;直线串方案二采用环形招弧角替代原有的均压环,招弧角
同时起均压作用。直线串方案一和方案二都需更换改制的碗头和球头,直线串方案三不
必更换改制的球头、碗头,采用角形招弧角直接固定在绝缘子上,为增大工频电流通流
能力,上、下电极均采用引流线。耐张串并联间隙的安装需利用三角连板操作孔,但不
必解开耐张串,缩减了现场安装的工作量。
2 可见电晕和无线电干扰试验
输电线路安装的各种金具,其可见电晕和无线电干扰特性是一项重要指标。对于输电线
路用并联间隙装置,其设计也应满足可见电晕和无线电干扰特性要求。直线串方案二和
方案三不采用复合绝缘子的均压环,为验证电极的均压效果,本次分别对这2种型式的
并联间隙进行了可见电晕和无线电干扰特性试验。
2.1 试验方法
2.1.1 可见电晕试验
试验时,升高电压至用夜视仪能观察到试品出现可见电晕,维持 5min,此电压即为“
电晕起晕电压”; 然后缓慢降低电压使电晕消失,再维持5min,记下此时的电压,即为
“电晕熄灭电压”。上述过程重复5次,并取平均值。
2.2.2 无线电干扰电压试验
将试验电压升至规定值,然后用无线电干扰仪测试试品产生的1mHz的无线电干扰电压(
RIV) 。
2.2 试验结果
当工频试验电压升高到100kV时( 大于规定试验电压(87.6kV) ) ,并联间隙的上、下
电极仍未见可见电晕,说明并联间隙的可见电晕性能满足国家标准要求。在2组试验中
,分别记录了并联间隙上的起晕电压和熄灭电压,如表1所示。
同时进行了无线电干扰特性试验。当工频试验电压升高到100kV时( 大于规定试验电压
(87.6kV) ,复合绝缘子用并联间隙在1MHz下的无线电干扰电压分别为126μV 和141μ
V,小于规定值(1mV) 。可知并联间隙的无线电干扰性能满足国家标准要求。
3 雷电冲击放电电压及伏秒特性试验
并联间隙装置要保证其雷电冲击放电发生在并联间隙装置上,同时又不会造成线路雷击
跳闸率明显升高,为此进行了雷电冲击50%放电电压和雷电冲击伏秒特性试验,以验证
并联间隙装置的雷电放电性能是否满足要求。单、双联绝缘子的雷电冲击50%放电电压
和雷电冲击伏秒特性相差不大,故只进行双联绝缘子安装并联间隙的雷电冲击50%放电
电压和雷电冲击伏秒特性试验。绝缘子串按2种型号考虑,分别为FXBW4-110/100-
1340和 FXBW4-110/100-1240。安装并联间隙装置后,复合绝缘子雷电冲击50%放电电
压试验结果如表2所示。试验过程中观察到安装并联间隙后,放电路径均在并联间隙上
。
从表2可见,复合绝缘子安装并联间隙装置后,雷电冲击50%放电电压均低于不安装并联
间隙装置时的数值。2种型号的复合绝缘子,安装并联间隙装置后雷电冲击伏秒特性均
低于不安装并联间隙装置时的数值。安装并联间隙装置后,雷电冲击 50% 放电电压和
雷电冲击伏秒特性降低了15%~20%。这主要是由于并联间隙装置减小了绝缘距离;另外
,中试控股并联间隙端部为球头,造成局部电场微小畸变,使放电电压有所降低。间隙
距离与雷电冲击50%放电电压值之间具有较好的线性关系。各并联间隙的雷电冲击伏秒
特性曲线均在复合绝缘子的伏秒特性曲线之下,并联间隙可起到在雷电过电压下引导雷
电放电保护复合绝缘子的作用。
4 工频电弧燃弧特性试验
工频电弧燃弧特性试验是为了验证线路绝缘子雷击闪络后,后续的工频短路电流产生的
电弧是否能被引导到并联间隙装置上,且电弧是否能够固定在并联间隙装置的端部燃烧
,使绝缘子串免于灼烧。选择FXBW4-10/100-1240复合绝缘子,按直线串方案二和方
案三方式安装并联间隙进行试验。试验条件按110kV系统短路电流水平及继电保护动作
时间并留有一定裕度后确定为20kA、0.12S。试验过程和结果借助高速摄像机,电能质
量分析仪 ,结合试验后电弧在试品(包括绝缘子、并联间隙、金具和模拟导线)上残留
的痕迹进行总结和分析。电弧能够转移到间隙电极的球头上。在模拟导线上有电弧烧蚀
的痕迹,说明电弧在电动力的作用下向电源外侧运动。试验结果表明所设计的110kV并
联间隙装置满足要求。
5 工频大电流通流能力试验
试验电流设定为40kA,持续时间为0.2S。对直线串方案三进行试验,电极和芯棒连接
处有熔焊现象,引流线导线线夹处无熔焊现象。实际110kV系统中,工频续流一般达不
到40kA,但为保证复合绝缘子的安全运行,建议直线串方案三使用于短路电流不大于
20kA的110kV 线路上。对耐张串方案进行试验,耐张串用招弧角和三角联板连接处有轻
微熔焊现象,招弧角电极焊接处正常。表明耐张串用复合绝缘子并联间隙可耐受40kA、
持续时间0.2S的工频续流。
6 结束语
( 1) 直线串方案二、直线串方案三虽然未采用复合绝缘子的均压环,但其可见电晕、
无线电干扰均满足110kV输电线路运行要求。
( 2) 安装并联间隙装置后,雷电冲击50%放电电压和雷电冲击伏秒特性降低了约15%~
20%,间隙距离与雷电冲击50%放电电压值之间具有较好的线性关系。各并联间隙的雷电
冲击伏秒特性曲线均在复合绝缘子的伏秒特性曲线下,并联间隙可起到在雷电过电压下
引导雷电放电保护复 合绝缘子的作用。
( 3) 通过大电流燃弧试验,证明了设计的并联间隙装置具备转移、疏导工频电弧的能
力。电弧可在很短时间内转移到间隙电极的球头上,电弧在电动力作用下向电源外侧运
动。
( 4) 大电流通流试验表明耐张串用复合绝缘子并联间隙可耐受40kA、持续时间0.2S的
工频续流。
( 5) 直线串方案三的招弧角电极与绝缘子芯棒在通过40kA大电流时产生局部电弧,发
生熔焊现象,但引流线导线线夹正常。为安全起见,建议直线串方案三使用于短路电流
小于20kA的110kV线路上。下面中试控股详细介绍输电线路故障测距的主要方法分为三
类:阻抗法、故障录波分析法、和行波法。
阻抗法
阻抗法建立在工频电气量的基础上,通过建立电压平衡方程,利用数值分析方法求解
得到故障点和测量点之间的电抗,由此可以推出故障的大致位置。根据所使用电气量的
不同,阻抗法分为单端法和双端法两种。
上一篇:输电线路测试装置(实力品牌)
快速跳转