
首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:线参数检测仪(源头大厂)
ZSXL-Y输电线路异频参数测试系统
测量线路间互感和耦合电容(线路直阻采用专门的线路直阻仪进行测量)
输电线路异频参数测试系统:集成异频测试电源、测量仪表、数学模型于一体,消除强干扰的影响,保证仪器设备的安全,能极其方便快速、准确地测量输电线路的工频参数。输电线路是用变压器将发电机发出的电能升压后,再经断路器等控制设备接入输电线路来实现。结构形式,输电线路分为架空输电线路和电缆线路。输电线路试验为离线检测和在线检测,运用带电作业或其他作业方式对杆塔本体、基础、架空导地线、绝缘子、金具及接地装置等的运行状态进行检测,可以对线路运行状态及可靠性提供评估依据,对线路状态检修提供可靠的分析数据,对线路事故、故障的原因进行分析判断及提前防范的作用。
提高高压输配电线路质量的措施
同时,要对施工材料的质量进行检查,确保材料的质量符合相关标准,然后,在施工过程中,要适当应用相关工艺技术,合理运用施工方法,规范施工技巧,并且要在后期施工过程中做好养护工作,为以后工作的开展提供更好的条件。
在施工之前,可以对杆塔进行试验,对齐施加一定的压力,然后,观测其形变程度,做好相关记录,最后,分析记录的数据,看是否符合相关标准。只有在实验结果达标的情况下,杆塔才可以投入使用。
参数
此外,也有小部分人为获取私利,盗取地下电缆。
常见的问题有:当遇到冰雪天气时,导线、杆塔上凝结冰霜,增加了导线、杆塔上的垂直荷载,容易造成导线的短路、断裂,严重者会发生杆塔倒塌;当遇到雷电天气时,空旷地洼地区的高压输配电线路易发生雷电现象,引发断电问题。
电力系统由发电厂(发电机、升压变)、220-500kV高压输电线路、区域变电站(降压变压器)、35-110kV高压配电线路(用户、降压变压器)和6-10kV配电线路以及220V380V低压配电线路组成。
其中高压输电线路、低压配电线路是连接发电、供电、用电之间的桥梁,极其重要!
输电线路工频参数包含线路的正序电容、零序电容、正序阻抗、零序阻抗、线路间的互感电抗和耦合电容测量;
DSP数字信号处理器为内核
参考标准: DL/T 741-2010
首先需仔细勘察高压输配电线路附近的地形、地质情况,根据实际情况及时调整高压输配电线路基础工程的施工方案。目前高压输配电线路的基础通常都是由钢筋混凝土结构浇筑而成,所以,在进行基础工程施工时,首先进行的工作是对该地区附近的岩石环境进行勘探,根据岩石的分布情况合理调整施工方案。
其次,要选择刚度和强度都符合标准的杆塔,适当运用杆塔施工技巧,从而,提高杆塔施工的质量。在受力的情况下,只有杆塔的刚度和强度符合标准,才可以确保其形变程度在规定的范围以内。
最后,在架线的过程中,要根据高压输配电线路区域的地形情况合理地设计架线线路,从而,实现线路辐射区域的最大化。架线施工时,首先要选择质量合格的电线,这样才能确保电线能够承受住外界环境的考验。除此之外,要根据我国居民分布的情况,对高压配电线路进行合理的路线设计,这样可以在最大程度上扩大电力辐射的区域。
仪器供电电源 三相,AC380V±10%,15A,50Hz (有效值)
仪器内部异频电源特性 最大输出电压 三相,0~200V(有效值<±1%)
最大输出电流 5A
输出频率 47.5Hz,52.5Hz (<±0.1HZ)
有功功率 功率因数在0.1~1.0时,±0.5%读数±1个字
有功功率 47.5Hz,52.5Hz (<±0.1HZ)
最大输出功率 三相3×3kW(9kW)
具备测量两相线路的功能(包括直流输电线路和电气化铁路牵引线路)
测量范围 电容 0.1~30μF
阻抗 0.1~400Ω
阻抗角 0°~360°
线路长度从0.3km到400km均应能够稳定准确测试
测量分辨率 电容 0.01μF
阻抗 0.01Ω
阻抗角 0.01°
测量准确度 电容 ≥1μF时,±1%读数±0.01μF
<1μF时,±3%读数±0.01μF
阻抗 ≥1Ω时,±1%读数±0.01Ω
<1Ω时,±3%读数±0.01Ω
阻抗角 测试条件:电流>0.1A
±0.3°(电压>1.0V),±0.5°(电压:0.2V~1.0V)
影响高压输配电线路运行安全的因素
人为破坏因素
人为破坏是造成高压输配电线路损坏的原因之一,其发生的原因主要是未认识到高压输配电线路的重要性。人为破坏大多是间接破坏,包括在高压输配电线路附近植树造林、工程施工等,前者会增加高压输配电线路火灾发生概率,后者则会造成地基破坏,杆塔倒塌引起线路断裂;
自然环境因素
自然环境因素是影响高压输配电线路运行安全的重要因素,尤其在一些恶劣天气下,高压输配电线路容易被损坏
1.变压器局部放电故障
在电压的作用下,绝缘结构内部的气隙、油膜或导体的边缘发生非贯穿性的放电现称为
局部放电。
局部放电刚开始时是一种低能量的放电,变压器内部出现这种放电时,情况比较复杂,
根据绝缘介质的不同,可将局部放电分为气泡局部放电和油中局部放电;根据绝缘部位
来分,有固体绝缘中空穴、电极尖端、油角间隙、油与绝缘纸板中的油隙和油中沿固体
绝缘表面等处的局部放电。
(1)局部放电的原因。
1)当油中存在气泡或固体绝缘材料中存在空穴或空腔,由于气体的介电常数小,在
交流电压下所承受的场强高,但其耐压强度却低于油和纸绝缘材料,在气隙中容易首先
引起放电。
2)外界环境条件的影响。如油处理不彻底下降使油中析出气泡等,都会引起放电。
3)由寻:制造质量不良。如某些部位有尖角高而出现放电。带进气泡、杂物和水分
,或因外界气温漆瘤等,它们承受的电场强度较
4)金属部件或导电体之间接触不良而引起的放电。局部放电的能量密度虽不大,但
若进一步发展将会形成放电的恶性循环,最终导致设备的击穿或损坏,而引起严重的事
故。
(2)放电产生气体的特征。放电产生的气体,由于放电能量不同而有所不同。如放
电能量密度在10-9C以下时,一般总烃不高,主要成分是氢气,其次是甲烷,氢气占氢
烃总量的日80%一90%;当放电能量密度为10‑8~10‑7’C时,则氢气相应降低,而出现
乙炔,但乙炔这时在总烃中所占的比例常不到2%,这是局部放电区别于其他放电现象
的主要标志。
随着变压器故障’>变压器故障诊断技术的发展,人们越来越认识到,局部放电是
变压器诸多有机绝缘材料故障和事故的根源,因而该技术得到了迅速发展,出现了多种
测量方法和试验装置,亦有离线测量的。
(3)测量局部放电的方法。
1)电测法。利用示波器、局部放电仪或无线电干扰仪,查找放电的波形或无线电干
扰程度。电测法的灵敏度较高,测到的是视在放电量,分辨率可达几皮库。
2)超声测法。利用检测放电中出现的超声波,并将声波变换为电信号,录在磁带上
进行分析。超声测法的灵敏度较低,大约几千皮库,它的优点是抗干扰性能好,且可“
定位”。有的利用电信号和声信号的传递时间差异,可以估计探测点到放电点的距离。
3)化学测法。检测溶解油内各种气体的含量及增减变化规律。此法在运行监测上十
分适用,简称“色谱分析”。化学测法对局部过热或电弧放电很灵敏,但对局部放电灵
敏度不高。而且重要的是观察其趋势,例如几天测一次,就可发现油中含气的组成、比
上一篇:输电导线参数检测仪(源头大厂)
下一篇:高压线参数检测仪(源头大厂)
快速跳转