
首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:变压器绕组位移测试仪(中试大厂)
ZSBR-8500变压器绕组变形测试仪
双通道16位AD采样,8寸彩色触摸屏,亮度可调,USB2.0接口,支持数据上传和联机测试
先进的DDS扫频技术
参考标准:DL/T 911-2016
变压器绕组变形测试仪:变压器设计制造完成后,其内部结构和各项参数基本保持不变,因此每个线圈的频域响应也随之确定,正常绕组的变压器,其三相频域响应曲线耦合程度基本一致;
当变压器在试验过程中出现匝间、相间短路,在运行中出现短路或其他故障因电磁拉力造成线圈移位,在运输过程中发送碰撞造成线圈相对移位,这些因素都会使变压器分布参数发生变化,其频域响应也发生变化,根据频域响应曲线即可判断变压器的变形程度;
当变压器遭受短路电流冲击或其他冲击后,变形有以下几种:
①绕组整体变形,是由于运输过程中,受到冲击、倾斜、振动等外力影响,造成绕组位移。这种变形绕组尺寸不变,只是对铁芯的相对位移变化。绕组的电感量、饼间电容量不变,对地电容量变化。一般电容量减小。
在等值电路中,谐振峰点向高频方向平移。所以,这种变形后所测频谱图中,和以前比较,各谐振点都仍然存在,不发生变化,只是峰值均向高频方向平移(向右)。
②中试控股详细讲解饼间局部变形,在短路电磁力作用下使部分固定不牢线饼被挤压,另外一些线饼拉长,这样饼间电容被改变。这种变形的后果使等值电路图中一些电感变大,一些变小;
与电感并联的饼间电容也随之改变。测量频谱图时,部分谐振峰点向高频方向移动,而且峰值下降;部分谐振点向低频方向移动,峰点升高。通过谐振峰值变化情况,判断饼间变形面积和变形程度。
③匝间短路,从理论上讲绕组发生匝间短路后,电感值下降,频谱曲线发生明显变化,幅值上升,一些谐振点峰值消失。
但理论是这样的,实际上难以捕捉到这种情况。一旦运行中发生匝间短路,线匝将被烧断,重瓦斯跳闸,压力释放阀动作,这时变压器油色谱分析也会不合格,变压器将吊罩检查的。
④引线位移变形,由于引线长度较大,固定不牢时,运行中产生位移变形。当引线位移时,等值电路中表现为两端口电容变化。
当信号入口端引线位移但引线电容与其他电路并联之,所以它的变化不会对频谱曲线有明显变化;而输出端引线位移,引线电容变化后对频响曲线有明显变化,尤其是曲线中300kHz~1MHz范围内。所以,在实际测试中,采用中性点注入信号源,以防上述的影响。
如果引线对地电容减小,频段内幅值上升,反之,则下降;引线对地电容变大,预示着引线向外壳方向移动,引线对地电容变小,则表示引线向绕组方向移动。
⑤中试控股详细讲解绕组辐向变形,当绕组受辐向力作用时,使内绕组向内收缩,直径变小,电感量变小。这时内外绕组间距离变大,其电容变小,将使频谱图中的谐振峰点向高频方向移动,且幅值有所增大。
⑥绕组轴向扭曲变形,当变压器绕组间隙较大或有部分撑条移位,在电磁力作用下,使绕组在轴向被扭曲为S状。这时部分饼问电容和对地电容减小。测量的频谱图上,有部分谐振峰向高频方向移动,在低频段谐振峰幅值下降,中频段峰值略有上升,高频段不变。
ZSBR-8500变压器绕组变形测试仪技术指标
1. 设置6种不同的扫描方式:
线性 1K-1000kHz_1.0步进1kHz 1000点
线性 1K-1000kHz_0.5步进0.5kHz 2000点
线性 1K-2000kHz_1.0步进1kHz 2000点
线性 1K-2000kHz_0.5步进0.5kHz 4000点
分段100HZ - 1000kHz 1440点
分段100HZ - 2000kHz 2440点
2. 测量范围:(-100dB) - (+20dB)
3. 测量精度:0.1dB;
4. 扫描频率精度:0.01%;
5. 信号输入阻抗:1MΩ;
6. 信号输出阻抗:50Ω;
7. 同相测试重复率:99.9%
使用绕组变形测试仪在使用过程中的注意事项。
(1)使用前,请先检查测试仪的外观,检查电源开关位置是否在“关”的位置、各接线端子是否正常;
(2) 测试仪的“接地”没有连接正确前,请不要开始绕组变形测试;
(3) 试验前应将被试变压器线端充分放电;
(4)中试控股详细讲解绕组变形测试应在解开变压器所有引线(包括架空线、封闭母线和电缆)的前提下进行,并使这些引线尽可能的远离变压器套管(周围接地体和金属悬浮物需离开变压器套20cm以上),尤其是与封闭母线连接的变压器
(5)测试时必须正确记录分接开关的位置。应尽可能将被试变压器的分接开关放置在第1分接,特别对有载调压变压器,以获取较全面的绕组信息。对于无载调压变压器,应保证每次测量在同一分接位置,便于比较
(6)变压器铁心必须与外壳可靠接地。测试仪外壳、测量阻抗外壳必须与变压器外壳可靠接地;
(7)应保证测量阻抗的接线钳与套管线夹紧密接触。如果套管线夹上有导电膏或锈迹,必须使用砂布或干燥的棉布擦拭干净;
(8)测试仪使用完毕后应放置在干净、温度较低的位置,避免强烈振动,并防止脏污的灰尘进入测试仪内部。
ZSBR-8500变压器绕组变形测试仪采用先进的DDS扫频技术;
ZSBR-8500变压器绕组变形测试仪采用双电源供电:市电AC220V士10%,内电源6V5AH蓄电池;
阻抗法是通过测量工频电压下变压器绕组的短路阻抗或漏抗来反映绕组的变形和移位及匝间开路和短路等缺陷。漏抗实质上是散布在变压器绕组与绕组之间,绕组内部及绕组与油箱之间的漏磁通形成的感应磁势的反映,因此对漏磁磁路的变化比较灵敏;短路阻抗则是漏抗和绕组电阻的平方和开方。由于一般大型变压器绕组电阻比漏抗要小很多,因此阻抗可以反映漏抗的变化,而且,测量阻抗比测漏抗易于实现。在现场测试中,建议在低电压下实施阻抗测量,电压根据被测变压器容量的大小一般取几百V,为避开铁芯非线性的影响,所加电流应>2A。被测变压器低压侧短路,高压侧施压,测量接线如图1所示(以两绕组变压器为例)。
图1 阻抗法测量接线示意图
当所加电源的频率逐步增高时,变压器绕组分布参数的特性逐渐体现出来。实质上,变压器绕组在高频下是一个由分布电感和电容构成的线性无源两端网络,如图2所示。图中,Ls为线匝自感;M为匝间互感;Cs为匝间电容;Cg为线匝对地电容(忽略了损耗因素)。
图2 绕组分布参数网络的等效电路图
频响法即是从绕组一端对地注入扫频信号源,测量绕组两端的端口特性参数,如输入阻抗、输出阻抗、电压传输比和电流传输比的频域函数。通过分析端口参数的频域图谱特性,判断绕组的结构特征。如果绕组发生变形,就会使绕组的分布电容和电感改变,反映到端口参数的频谱发生变化。为了简化,通常只测量一种端口参数。电压传输比反映了等效网络的衰减特性,是常测的参数之一[1],测量接线实现如图3所示。入端施加正弦扫频电压信号Ui,并测量输出电流在采样电阻R上的压降U0,并计算U0/Ui,得到传输比随频率变化的图谱。如果输出电流I0很小,U0也很小,则U0/Ui很小,表明绕组内部发生了并联谐振,频谱曲线上出现频谷;反之,则表明发生串联谐振,频谱曲线上出现频峰。理论计算表明,在频峰处,绕组上的驻波分布将呈现为整个半正弦波的分布;而在频谷处,驻波呈现为奇数个1/4正弦波分布。
图3 变压器绕组频谱的测量接线图
显然,绕组的结构、大小、位置和引线不同,频峰和频谷的位置和高低也不同,频谱也就不同,因此,不同绕组的频谱图谱肯定不同。但是,对于同类型的变压器绕组,由于绕组结构的类似性,其测到的频谱曲线必然有可比性。可用来帮助判断和确定绕组的变形故障。
2 变压器绕组变形故障模拟研究
选取1台变压器进行变形故障的模拟试验研究,一种是局部的匝间压缩,即轴向压缩变形;一种是局部凹坑,属幅向变形。并分别采用阻抗法和频响法对两种变形进行测量,目的是比较两种方法对不同变形故障的灵敏性和有效性。变压器为三相两绕组,所测绕组为连续式。测试均在变压器吊罩后进行,测试结果见表1。
测试方法为:
——阻抗法测低压短路阻抗;
——电桥法测绕组漏感;
——BRTC变压器绕组特征测试仪(即频响测试仪)测绕组频谱
图4 变形前高压三相绕组频谱(1~500kHz)
2) 测试工况2
轴向局部变形。在C相高压线圈顶部抽掉匝间垫块(见图5中的标示圈),压紧头5匝线圈。高压绕组共80匝,因此,可认为有5%的变形。测录低压短路阻抗,漏感和高压三相绕组频谱曲线(见图6)。
25-2.gif (10814 bytes)
图5 轴向变形实物照片
24-0.gif (5452 bytes)
图6 轴向变形后高压三相绕组频谱(1~500kHz)
3) 测试工况3
幅向变形。在C相高压线圈底部用力敲两处,凹坑深达1 cm左右(见图7中的标示圈),测录低压短路阻抗,漏感和高压三相绕组频谱曲线(见图8)。
25-6.gif (21879 bytes)
图7 幅向变形实物照片
25-7.gif (6160 bytes)
图8 幅向变形后高压三相绕组频谱(1~500 kHz)
针对上述3种测试工况分析为:
a) 轴向变形后C相的频谱曲线在第4个频峰发生了较明显的改变(箭头指处),频峰向高频方向偏移约40 kHz,幅值变化约4 dB,A和B相的频谱基本不变。偏移频峰位于300~400 kHz的中高频域。根据频率谐振峰与变形面积的关系,第1个频峰发生改变,说明有整体变形;第4个频峰发生改变,说明线圈可能存在1/4面积以下的局部变形;频峰向高频方向偏移,说明部分分布电感减小或分布电容减小。
b) 幅向变形对频谱曲线的影响颇为显著。第1个频峰向高频方向偏移约6 kHz,表明整体电感有较明显的变化;中频域的频峰向中部发生大面积的挤压,说明局部的变形相当显著(箭头指处),导致了整体特性的变化。
c) 阻抗法对影响整体电感的变形较为灵敏,如幅向变形、轴向扭曲、匝间开路、短路等,但对匝、饼间的局部拉伸压缩,线圈整体位移,分接开关触头烧蚀等不灵敏。频响法对影响线圈电容和电感的变形都很灵敏,因此后者具有显著的优越性。当然,阻抗法在长期的生产实践中已建立严格的规范和标准,便于实施,易于判断。建议在实际运用中,灵活结合两种方法,作出准确的分析和判断。
上一篇:绕组变形频响法测试仪(中试大厂)
快速跳转