首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:蓄电池极板硫化结晶活化修复仪
ZSKH-6200(100A)智能蓄电池活化仪
一机多用,蓄电池日常维护功能齐全
智能蓄电池活化仪:该活化仪是一款多功能智能型蓄电池维护维修检测设备,是对蓄电池进行日常维护必不可少的好帮手。本设备还配备铝合金拉杆箱,可以非常方便转场操作。在电力、金融、通信、军队、汽车、电池生产厂、地铁、大型工厂等行业有着广泛的应用。
电池活化
ZSKH-6200(100A)智能蓄电池活化仪技术指标
电池充电
ZSKH-6200(100A)智能蓄电池活化仪蓄电池活化仪常见问题解答及使用技巧
ZSKH-6200(100A)智能蓄电池活化仪存放保护
ZSKH-6200(100A)智能蓄电池活化仪普通蓄电池的极板是由铅和铅的氧化物构成,电解液是硫酸的水溶液。
适用范围广:兼容2V/6V/12V单体,20-1000Ah电池
电流线、电压线、温度检测线集成一起,开尔文电池夹头,连接简易可靠
众所周知,在各行各业对电源安全要求较高的场合或重要系统都配备有后备电源、UPS等,蓄电池就是其核心部分,这些蓄电池有很大一部分是成组使用,任何单节电池的老化落后都会严重影响到整组电池的性能,并使得整组电池中其它单体变坏,进而引起整组电池不得不提前退出运行;
在主菜单中按【电池活化】键,进入电池活化菜单界面。如下图:
1)设定电池编号、电池类型均可参照【电池充电】中的设定方法。
例如:(给2V100.0Ah电池活化)
在完成上述步骤后,设备设置画面为:
之后,点击【设循环】,进入循环活化充放电设置:
A、循环活化充放电设置
点击【设循环】后,进入循环活化设置界面如下图:
默认循环号【ALL】表示全选,用户可先在全选状态下修改所有循环的参数,再切换循环号对个别循环参数进行调整。循环号可通过↑/↓键进行切换,或直接输入想修改的循环号,输入0代表全选。
用户可根据电池的状况,进行具体的【充电电流】、【充电时间】、【放电电流】、【放电时间】的设定。
B、活化执行过程
完成【设循环】后,点击【确定】返回【电池活化】界面,选择【开始】执行活化程序。
先是活化放电指示,内容有电池电压、放电电流、已放电时间、循环次数、活化放电电流/电压曲线;后为活化充电指示内容有电池电压、充电电流、已充电时间、循环次数、活化充电电流/电压曲线。执行过程中,点击【退出】可以中断活化,返回上级菜单。
从第一次循环充放电开始,至第N次充放电运行完毕为止,每一次充、放、循环次数的变化,都伴随有声音提示。
型号 ZSKH-6200(100A)
充/放电
电压 范围 1.0-3.0V(2V模式)
4.0-8.0V(6V模式)
10-16.0V(12V模式)
测试精度 0.5%±5dgt
控制精度 0.5%±5dgt
分辨率 0.01v
充/放电
电流 范围 5-100A(2V模式)
3-30A(6V模式)
3-30A(12V模式)
测试精度 0.5%±5dgt
控制精度 0.5%±5dgt
分辨率 0.1A
温度 范围 —20℃~80℃
精度 ±1℃
分辨率 1℃
尺寸 380mm*180mm*280mm
主机重量 14.5KG
显示方式 240*128 DOTS LCD(带背光)
适用电池 2V/6V/12V,20-1000Ah
使用环境 0℃~50℃ 5%~90%RH
通讯接口 USB host (标配),RS232/RS485(选配),Earthnet(选配)
电源功率 AC220V 500w
散热方式 风冷,双风扇
电池充电的界面于电池放电界面类似,操作也相一致。在主菜单中点击【电池充电】,进入电池充电菜单界面。如下图:
与放电设置类似,点击电池编号输入区域,按数字键可进行修改(四位数),同样方法可以修改充电电流、充电时间、截止电压。
注意:★ 选定电池类型后,默认充放电流为0.1C,也可以在“系统设置-控制参数-充放系数”功能下设置默认电流系数,可设置范围为0.05C-0.3C。如果用户不要默认值,也可以手工输入任何电流值。
★默认的充电限压为电池标称值的1.2倍,对于2v电池为2.4V;放电限压为单体标称的0.9倍,对于2v电池为1.8V。用户可根据需要设置充放电限压值。
充电限压值指恒压均充电压值,当恒流充电电压到达该值后即进入恒压充电。由于在恒压充电中,电流逐步减小直到小到一定程度(默认为Ah数的1.5%),即进入浮充状态。进入浮充后,保持浮充,电压默认为电池标称值的1.125倍,对于2v电池即浮充电压2.25v。关于浮充状态有两个参数:一个是什么条件下进入浮充,一个是浮充电压为多少,都是可以由用户修改的。修改方法为:进入“系统设置-控制参数-浮充系数”菜单,修改“进入浮充的电流”值和“浮充单体电压”系数值即可。
4)点击【开始】启动充电后,电池充电执行过程如下:
此时显示有电池即时的充电电压、充电电流、已充电时间/设置充电时间值、充电方式、充电温度。随着充电时间的过去,还可以看到充电曲线和电池变化趋势。
注意:★在充电坐标中,横轴表示充电时间,纵轴表示充电时电池电压值和充电电流值。其中,坐标轴中的虚横线代表电池标称电压和恒流充放电的电流。
★在整个界面下方,显示有当天的日期和即时时刻,还有一个温度显示的是电池极柱的温度。
★ 设备在充电过程中,先是以“恒流充电”,然后待电池电压升至“截止电压”时,自动转换为“恒压充电”,在恒压充电的情况下,充电电流会逐渐减小,当电流小于一定值的时候,充电就会转入到“浮充”状态。
充电过程中人为退出或意外退出,待下次继续进入充电操作时,系统将提示【上次进程未完成,是否继续?】,用户可根据需要进行操作。
缩写一览表
Ic ---> 充电电流
If ---> 放电电流
Uo ---> 电池开始电压
Ue ---> 电池结束电压
Ro ---> 活化开始的内阻值
Re ---> 活化结束的内阻值概述:
智能蓄电池活化仪,专用于日常维护中对落后蓄电池处理的便携式产品,可以针对落后电池
不同的实际情况,对落后电池进行容量试验,提升落后电池的容量。它具 有三种独立的使用
方式:电池放电方式、电池充电方式和电池活化方式。同时配备PC机应用软件,把采集的数
据上传至计算机,便于进行各种分析。
当使用完后,应将智能蓄电池活化仪主机及时放入机箱内。所有夹具和连线应整理后放入机箱内相应位置。
氢气与油中溶解的空气混合以溶解状态或悬浮状态存在于变压器油中。当运行条件,如油温或油压发生变化时,氢气便会以微小气泡的形式从油中析出,在狭长的缝隙中逐渐积聚并附着在绝缘表面上,这就形成了气泡性电晕放电的条件。这种放电若发生在导线绝缘和垫块之间或导线绝缘和撑条的缝隙处,造成的危害就更大。
2.变压器油中产生氢气的原因
2.1 变压器油在电磁场作用下的分解
一般情况下,110kV及以下电网中的变压器所用的变压器油都是25号变压器油,属于石蜡基油。石蜡基油中烷烃比例较大,烷烃类油化学性质比较稳定,抗氧化性能好,但是耐热性能较差,尤其在电场作用下容易发生脱氢反应。
2.2 水分对变压器油的影响
通常变压器油中的水分主要是由于变压器受潮产生水引起的。因为水分子为强极性,在电场作用下水分子发生极化而形成偶极子,并按电场方向转动而形成泄露电流较大的水桥,进而引起水分子汽化而生成气泡。在电场作用下,气泡又形成气体小桥,气泡的介电常数小于油的介电常数,此时气泡承受的电场强度更高,引起电晕放电,致使气体水分子首先被电离生成氢气和氧气。
纸绝缘干燥不彻底或空气中水分侵入等原因也会引起氢气的产生,这是因为油浸纸绝缘放电的起始场强随着固体绝缘的干燥程度而增加。
2.3 金属促进变压器油脱氢反应
由于变压器中使用了一部分不锈钢材料,在变压器油逐渐氧化过程中,不锈钢材料中的镍分子会促进变压器油产生脱氢反应。一种固体要成为催化剂,能够吸附反应物是一个基本条件。催化作用过程中,物理吸附能显着降低其后进行的化学吸附的活化能。在同时,变压器油是烃类化合物。由于烃分子热解或氧分子的碰撞产生了游离基R,R与氧分子的自由价结合,生成过氧化自由基R+O2—>ROO,然后ROO再和油中的新烃分子结合产生新的自由基。在这个过程中,铁、铜等金属能够加强油的氧化反应作用。由于它们具有可变的原子价,促使过氧化物分解,起着氧化反应催化剂的作用,同时产生大量的氢气。
2.4 变压器油的析气性
变压器油析气性是指变压器油在电场和电离的作用下会产生放气或吸气的现象。油品析气现象的产生,是因为溶解于油中的气泡,在高电场强度的作用下,发生游离而形成高能量的电子或离子。这些高能量粒子对油分子产生剧烈碰撞使油分子的C-H或部分C-C链断裂,产生活泼氢及活性烃基基团,通过活泼氢对烃分子的作用,产生吸气或放气现象。
2.5 绝缘材料中吸附的氢气释放
在变压器干燥、浸渍、高电压试验等热和电的作用下,绝缘材料分解产生氢气、烃类气体,这些气体吸附于多孔性而且较厚的固体绝缘纤维材料中,短期内难以释放到油中去。由于变压器绝缘材料使用得较多,绝缘层内部吸附的气体完全释放于油中所需时间较长,因而出厂试验时油和纸中气体尚未达到溶解平衡,氢气含量偏低。经过一段时间后,变压器到达现场验收时,氢气含量偏低。经过一段时间后,变压器到达现场验收时,纸中所吸附的气体逐渐释放出来,所以油中溶解的气体,尤其是氢气含量明显升高。
同时,一些金属材料如碳素钢和不锈钢等也可促进变压器油发生脱氢反应,从而使氢气释放到变压器油中,造成油中氢气含量增高。这就是变压器在投运前含有一些特征气体的原因。
3.变压器油中氢气含量增高的防范
3.1 变压器内部裸露的金属,如铜、铁及不锈钢材料,在其表面必须覆盖绝缘漆,以防止与变压器油中水分反应或作为催化剂加速变压器油的氢化裂解。而且,金属材料的所有表面绝缘漆必须彻底固化后,才能进行油箱注油。
3.2 严格执行变压器工艺规程,尽量降低变压器绝缘材料的含水量。在变压器出厂整理时,尽量缩短其暴露在空气中的时间,以防止水分的侵入,避免水分在电场作用下的电离。
3.3 在确认变压器内部没有故障点的情况下,处理油中氢气含量异常增高通常有两种方法:一种方法是采用现场换油,采用此方法处理后的变压器油除氢较为彻底,但是成本较高;第二种方法是采用热油循环或真空分离方法。
上一篇:电池极板硫化结晶活化修复仪
下一篇:铅酸电池极板硫化结晶活化修复仪
快速跳转