首页 > 新闻中心 > 电力技术<
中试控股技术研究院鲁工为您讲解:配电电缆介质损耗测试仪(源头大厂)
ZSDJS-9535电缆介损测试仪
电缆介损试验相关标准:
DL/T 1694.6-2020 高压测试仪器及设备校准规范 第6部分:电力电缆介质损耗测试仪
简易读懂:电缆介损测试仪是做什么?
ZSDJS-9535电缆介损测试仪针对大容量和高电压容性设备,如高压电缆(介损tgδ:无限制,电流I:20uA ≤ I ≤ 15A,电压HV:1KV ≤ HV ≤ 40KV,频率 f:30Hz≤ f ≤ 300Hz),高压电机,高压套管的出厂试验等,在采用外部大功率试验变压器或串联谐振等外部加压设备加压的环境下,进行介损测试。仪器分为手持终端和测试主机两部分。手持终端与测试主机之间采用2.4G无线通讯方式。可做正接法测试和反接法测试,正接法和反接法的电流测量量程均可达到2uA-15A的超宽范围。外施高压不同频率可自适应测量,范围可达30Hz-300Hz。
中试控股始于1986年 ▪ 30多年专业制造 ▪ 国家电网.南方电网.内蒙电网.入围合格供应商
ZSDJS-9535高压电缆介损测试仪主要针对大容量和高电压容性设备,如高压电机,高压套管的出厂试验,高压电缆等,在采用外部大功率试验变压器或串联谐振等外部加压设备加压的环境下,进行介损测试。仪器分为手持终端和测试主机两部分。手持终端与测试主机之间采用2.4G无线通讯方式。可做正接法测试和反接法测试,正接法和反接法的电流测量量程均可达到2uA-15A的超宽范围。外施高压不同频率可自适应测量,范围可达30Hz-300Hz。
参考文献
交联聚乙烯电缆的介质损耗介绍
现象:电介质在外电场作用下,由于介质电导和介质极化的滞后效应,其内部会有发热现象,这说明有部分电能已转化为热能耗散掉,电缆绝缘介质(XLPE)也不例外。
定义:电介质在电场作用下,在单位时间内因发热而消耗的能量称为电介质的损耗功率,即介质损耗(diclectric loss),简称为介损。
作用:介质损耗的大小是衡量绝缘介质电性能的一个重要指标。介质损耗不但消耗了电能,而且使绝缘发热引发热老化。如果介电损耗较大,甚至会引起介质的过热而绝缘破坏,所以从这种意义上讲,介质损耗越小越好。
形成机理:按照电介质的物理性质通常有三种电介质损耗形式。
(1)漏导损耗:实际使用中的绝缘材料都不是完善的理想的电介质,在外电场的作用下,总有一些带电粒子会发生移动而引起微弱的电流,这种微小电流称为漏导电流,漏导电流流经介质时使介质发热而损耗了电能。这种因电导而引起的介质损耗称为“漏导损耗”。
对于XLPE电缆,在直流及交流电压下都存在漏导损耗,通常直流电压用泄漏电流的大小或绝缘电阻的大小来反映介质的这一损耗情况。
(2)极化损耗:在介质发生缓慢极化时(松弛极化、空间电荷极化等),带电粒子在电场力的影响下因克服热运动而引起的能量损耗。
对于XLPE电缆,只有在交流电压下才存在极化损耗,而且随着交流频率的增大,极化损耗通常也增大。
(3)局部放电损耗:通常在固态电介质中由于存在气隙或油隙,当外施电压达到一定数值时,气隙或油隙先放电而产生损耗,这一损耗在交流电压下要比直流电压时大的多。
对于XLPE电缆,在直流电压下,可用泄漏电流的大小来反映电介质的损耗,而在交流电压下,介质损耗不能单用泄漏电流来表示,通常用介质损耗正切来表示,即在一定的交流电压下,电缆绝缘所表现出的等效电阻Rg的大小值。
由于交联聚乙烯电力电缆不推直流耐压试验,交流耐压试验仅能反映电缆的电介质击穿特性,不能反映电缆的损耗特性,因此有必要对电力电缆进行介损测量。
介质损耗因数的定义是:
GB/T 3048.11-2007 电线电缆电性能试验方法 第11部分:介质损耗角正切试验
GB/T 3334-1999 电缆纸介质损耗角正切(tgδ)试验方法(电桥法)
GB/T 5654-2007 液体绝缘材料 相对电容率、介质损耗因数和直流电阻率的测量
GOST 12179-1976 电缆和导线介质损失角正切测定法
特点:
1、7寸彩色液晶显示工业级电容屏:仪器采用高端电容式触摸7寸彩色液晶显示屏,超大显示界面所有操作步骤中文菜单显示,每一步都清晰明了。
2、超宽电流量程:正接法和反接法电流测量量程都可以达到20uA-15A的超宽范围,更大电流可定制。
3、超宽频率范围:外施高压频率可达30Hz-300Hz的超宽范围,自适应测量。
4、各种高电压可定制:外施高压电压能够满足各种高电压环境,可根据用户需求定制。
5、光纤高压通讯:测试主机高压采样与低压采样之间采用工业级光纤通讯模块,在兼顾高低压之间绝缘性能的同时又能最大程度保障测试数据的精度。
6、独立手持操作终端:手持终端与测试主机完全隔离采用2.4G无线通讯,整个测试过程中用户只需在手持终端上操作即可,最大程度保障操作人员的人身安全。
7、锂电池供电:手持终端、测试主机低压端、测试主机高压端,都采用锂电池供电,充满电可连续工作8小时以上。
8、U盘存储:本机存储的数据可以通过USB接口保存至U盘中。
参数:
1、使用条件:-15℃∽40℃ RH<80%
2、标准电容:tgδ: <0.005%,Cn: 99.78PF
耐压电压: 40KV
3、分辨率:介损tgδ: 0.001%,电容量Cx: 0.001pF,频率f:0.001Hz
4、精度:介损△tgδ:±(读数*1.0%+0.040%),电容量△C x :±(读数*1.0%+1.00PF),频率 △f:±(读数*1.0%+0.10Hz)
5、测量范围:介损tgδ无限制,电流I 20uA ≤ I ≤ 15A,电压HV 1KV ≤ HV ≤ 40KV,频率f 30Hz≤ f ≤ 300Hz
6、手持终端锂电池:7800mAh锂电池
7、充电器:DC12.6V 3000mA
8、显示方式:7寸800*480彩色液晶显示屏
9、操作方式:工业级电容触摸屏
10、手持终端尺寸(mm)270(L)×160(W)×65(H)
11、测试主机尺寸(mm)300(L)×300(W)×600(H)
12、存储器大小200组,支持U盘数据存储
13、重量(手持终端)1.5Kg
14、重量(测试主机)23Kg
介质损耗因数:tgδ只与材料特性有关,与材料的尺寸、体积无关,便于不同设备之间进行比较。
测量介质损耗因数:tgδ判断电气设备的绝缘状况是一种传统的、十分有效的方法。它能反映出绝缘的一系列缺陷,如绝缘受潮,油或浸渍物脏污或劣化变质,绝缘中有气隙发生放电等。这时流过绝缘的电流中有功分量IRX增大了,:tgδ也加大。
按照电力设备预防性试验规程的规定,对多种电力设备(如电力变压器、发电机组、高压开关、电压电流互感器、套管、耦合电容等)都需要做介质损耗因素(:tgδ)的测量。
所以:tgδ试验是一项必不可少而且非常有效的试验。能较灵敏地反映出设备绝缘情况,发现设备缺陷。
二、介质损耗因数(tgδ)测量原理
介质损耗测量电桥分类:
(一)西林电桥(如QS1)
1.西林电桥简介
西林电桥即QS1电桥是80年代以前广泛使用的现场介损测试仪器。试验时需配备外部标准电容器(如BR16型标准电容器),以及10kV升压器及电源控制箱。需要调节平衡,结果需要换算,使用不太方便。
2.西林电桥工作原理
高压西林电桥是由:交流阻抗器、转换开关、检流计、高压标准电容器等组成。调节R3、C4使电桥平衡,此时a、b两点电压幅值相位完全相等,即R3、C4两端电压相等。
3.西林电桥测量原理
经过运算,按复数相等实部、虚部分别相等的规定可得到:
按串连模型介损定义:由于R4是固定的3184Q,频率是50Hz、C4单位为uF时,tgδ=C4,因此可以在C4刻度盘上读出介损,通过R3、R4、Cn可以计算Cx。
现场使用QS1电桥时,需要先将升压装置,标准电容器和电桥等进行连线,然后调节R3和C4,使得检流计指示为零。这时电桥平衡。读得C4值即为tgδ值,R3值经过计算可得出被试品电容值。总之现场操作使用都比较麻烦,抗干扰能力差,已经不能适应现在电气试验工作的需要。
(二)电流比较仪电桥
1.电流比较仪电桥工作原理
特点是测晕精度高,适合实验室高精度测量,电流比较仪电桥的工作原理是采用安匝平衡的原理。平衡过程见右图,当交流电源加在试品、标准电容器和电桥及地之间,在试品上产生一个电流1x,在标准电容器上也产生一个电流ln,当两个电流流过Wx、Wn时,由于lx、ln两个电流的相位、幅值不相同,使Wd 有电流ld产生,通过调整Wx、Wn、C、R使lx、Iln两个电流的幅值相同,相位相反。
压器控制箱、高压试验变压器(升压变压器)、连接导线。接线原理如图示。
工作原理:将控制箱、高压试验变压器用连接导线按正确的方式连接上,将手轮调回零位,接通电源,控制箱面板绿灯指示
亮,表示电源接通。按下起动按钮,红灯亮,绿灯灭,表示试品已接通,可以升压。转动调压器手轮,均匀而较快地升压,
同时从控制箱指示仪表读取所升高压电电压数据,并记录所升高电压的稳定时间。
二. 高压试验变压器故障现象
该仪器是自武汉某电子设备厂购得的,曾出现故障,并返厂修理过,后来又出现故障,两次现象相同,表现为:控制箱高电
压指示仪表指示不正常(即不能检测试验时所升高电压数据)。外观初步检查,自耦调压器二次输出正常,电压表无异常,
线路连接正确。
三. 高压试验变压器原因分析
仪器检查及故障原因分析:控制箱内的控制回路升压正常,输入、输出正常;连接导线用万用表欧姆挡测试,也显示正常;
因此判断可能是高压试验变压器故障。从原理图可看出,高压试验变压器有三个同芯线圈——原边线圈、高压输出线圈、仪
表专用线圈。工作时,控制箱内电压回路接通后,通过自耦调压器的调节,使高压试验变压器的原边线圈与高压输出线圈的
比例关系不变,而其匝数远远小于高压输出线圈,故从仪表上可读取升压值。将试验变压器拆开后检查发现,变压器原边线
圈、高压输出线圈均无异常,而仪表专用线圈有明显的过热痕迹,因此判断为仪表专用线圈烧毁。
检查仪表线圈,其所使用导线为0.3mm2。分析烧毁原因,应该是由于线圈芯线的截面积较小,载负荷能力差,致使在仪器升
压工作过程中当泄漏电流较大时,将线圈烧毁。仪器两次故障现象相同,均是该原因造成的,由于线径是在设计装配过程中
选型决定的,所以在上次返厂修理时,问题没有得到彻底的解决。
四. 高压试验变压器处理方法
*的办法是更换仪表线圈。仪表线圈与另外两个线圈的排列顺序是——从铁芯向外,依此为仪表线圈、高压输出线圈、原边线
圈(即一次线圈)。更换仪表线圈,在较洁净的房间室内,将铁芯硅钢片一一拆开,然后将原边线圈、高压输出线圈依此取
下,用白布分别包好、放好,防止尘土及异物,以备装配;测量好仪表线圈的原绕制成型的数据,然后将已烧毁的仪表线圈
取下,选用截面积较大、载负荷能力较高的0.45mm2的漆包线,按原来的仪表线圈匝数及装配外型尺寸重新绕制。绕制完成后
浸漆、干燥。开始装配,先将仪表线圈按原样装好,再将高压输出线圈、原边线圈按原来的位置安装好,将700多片硅钢片重
新按原型装配。zui后对高压试验变压器的变压器油进行了更新。
将修好的仪器进行空载试验、带负荷试验,显示正常;与另外的一套仪器升压试验比较,结果良好,达到了工况要求。在随
后的循环水高压电机、氟里昂高压电机及公司内配电变压器的检修试验中,使用该仪器,显示稳定可靠。
目前在两年多的实践中证明,该试验变压器的故障处理方法是可行的。
变压器耐压试验中应注意的几个问题
变压器能否可靠工作,zui重要的指标就是绝缘结构。据有关部门调查统计,变压器发生的故障有60%左右是在绝缘系统中,
可见对变压器绝缘性能进行质量检测,是何等的重要。国家标准GB 19212.1-2003《电力变压器、电源装置和类似产品的安全
第1部分:通用要求和试验》对低压变压器工频耐压试验的电压值、受试部位等都有较详细的规定。 本人长期从事低压变压器
上一篇:配电电缆介损测试仪(源头大厂)
快速跳转