首页 > 新闻中心 > 电力技术<
中试控股技术研究院鲁工为您讲解:35kV电缆介质损耗试验系统
ZSDJS-9510电缆介损测试仪
电缆介损试验相关标准:
DL/T 1694.6-2020 高压测试仪器及设备校准规范 第6部分:电力电缆介质损耗测试仪
简易读懂:电缆介损测试仪是做什么?
ZSDJS-9510电缆介损测试仪针对大容量和高电压容性设备,如高压电缆(介损tgδ:无限制,电流I:20uA ≤ I ≤ 15A,电压HV:1KV ≤ HV ≤ 40KV,频率 f:30Hz≤ f ≤ 300Hz),高压电机,高压套管的出厂试验等,在采用外部大功率试验变压器或串联谐振等外部加压设备加压的环境下,进行介损测试。仪器分为手持终端和测试主机两部分。手持终端与测试主机之间采用2.4G无线通讯方式。可做正接法测试和反接法测试,正接法和反接法的电流测量量程均可达到2uA-15A的超宽范围。外施高压不同频率可自适应测量,范围可达30Hz-300Hz。
中试控股始于1986年 ▪ 30多年专业制造 ▪ 国家电网.南方电网.内蒙电网.入围合格供应商
ZSDJS-9510高压电缆介损测试仪主要针对大容量和高电压容性设备,如高压电机,高压套管的出厂试验,高压电缆等,在采用外部大功率试验变压器或串联谐振等外部加压设备加压的环境下,进行介损测试。仪器分为手持终端和测试主机两部分。手持终端与测试主机之间采用2.4G无线通讯方式。可做正接法测试和反接法测试,正接法和反接法的电流测量量程均可达到2uA-15A的超宽范围。外施高压不同频率可自适应测量,范围可达30Hz-300Hz。
特点:
参考文献
交联聚乙烯电缆的介质损耗介绍
现象:电介质在外电场作用下,由于介质电导和介质极化的滞后效应,其内部会有发热现象,这说明有部分电能已转化为热能耗散掉,电缆绝缘介质(XLPE)也不例外。
定义:电介质在电场作用下,在单位时间内因发热而消耗的能量称为电介质的损耗功率,即介质损耗(diclectric loss),简称为介损。
作用:介质损耗的大小是衡量绝缘介质电性能的一个重要指标。介质损耗不但消耗了电能,而且使绝缘发热引发热老化。如果介电损耗较大,甚至会引起介质的过热而绝缘破坏,所以从这种意义上讲,介质损耗越小越好。
形成机理:按照电介质的物理性质通常有三种电介质损耗形式。
(1)漏导损耗:实际使用中的绝缘材料都不是完善的理想的电介质,在外电场的作用下,总有一些带电粒子会发生移动而引起微弱的电流,这种微小电流称为漏导电流,漏导电流流经介质时使介质发热而损耗了电能。这种因电导而引起的介质损耗称为“漏导损耗”。
对于XLPE电缆,在直流及交流电压下都存在漏导损耗,通常直流电压用泄漏电流的大小或绝缘电阻的大小来反映介质的这一损耗情况。
(2)极化损耗:在介质发生缓慢极化时(松弛极化、空间电荷极化等),带电粒子在电场力的影响下因克服热运动而引起的能量损耗。
对于XLPE电缆,只有在交流电压下才存在极化损耗,而且随着交流频率的增大,极化损耗通常也增大。
(3)局部放电损耗:通常在固态电介质中由于存在气隙或油隙,当外施电压达到一定数值时,气隙或油隙先放电而产生损耗,这一损耗在交流电压下要比直流电压时大的多。
对于XLPE电缆,在直流电压下,可用泄漏电流的大小来反映电介质的损耗,而在交流电压下,介质损耗不能单用泄漏电流来表示,通常用介质损耗正切来表示,即在一定的交流电压下,电缆绝缘所表现出的等效电阻Rg的大小值。
由于交联聚乙烯电力电缆不推直流耐压试验,交流耐压试验仅能反映电缆的电介质击穿特性,不能反映电缆的损耗特性,因此有必要对电力电缆进行介损测量。
绝缘老化指因电场、温度、机械力、湿度、周围环境等因素的长期作用,使电工设备绝缘在运行过程中质量逐渐下降、结构逐渐损坏的现象。绝缘老化的速度与绝缘结构、材料、制造工艺、运行环境、所受电压、负荷情况等有密切关系,绝缘老化最终导致绝缘失效,电力设备不能继续运行。
GB/T 3048.11-2007 电线电缆电性能试验方法 第11部分:介质损耗角正切试验
GB/T 3334-1999 电缆纸介质损耗角正切(tgδ)试验方法(电桥法)
GB/T 5654-2007 液体绝缘材料 相对电容率、介质损耗因数和直流电阻率的测量
GOST 12179-1976 电缆和导线介质损失角正切测定法
1、7寸彩色液晶显示工业级电容屏:仪器采用高端电容式触摸7寸彩色液晶显示屏,超大显示界面所有操作步骤中文菜单显示,每一步都清晰明了。
2、超宽电流量程:正接法和反接法电流测量量程都可以达到20uA-15A的超宽范围,更大电流可定制。
3、超宽频率范围:外施高压频率可达30Hz-300Hz的超宽范围,自适应测量。
4、各种高电压可定制:外施高压电压能够满足各种高电压环境,可根据用户需求定制。
5、光纤高压通讯:测试主机高压采样与低压采样之间采用工业级光纤通讯模块,在兼顾高低压之间绝缘性能的同时又能最大程度保障测试数据的精度。
6、独立手持操作终端:手持终端与测试主机完全隔离采用2.4G无线通讯,整个测试过程中用户只需在手持终端上操作即可,最大程度保障操作人员的人身安全。
7、锂电池供电:手持终端、测试主机低压端、测试主机高压端,都采用锂电池供电,充满电可连续工作8小时以上。
8、U盘存储:本机存储的数据可以通过USB接口保存至U盘中。
参数:
1、使用条件:-15℃∽40℃ RH<80%
2、标准电容:tgδ: <0.005%,Cn: 99.78PF
耐压电压: 40KV
3、分辨率:介损tgδ: 0.001%,电容量Cx: 0.001pF,频率f:0.001Hz
4、精度:介损△tgδ:±(读数*1.0%+0.040%),电容量△C x :±(读数*1.0%+1.00PF),频率 △f:±(读数*1.0%+0.10Hz)
5、测量范围:介损tgδ无限制,电流I 20uA ≤ I ≤ 15A,电压HV 1KV ≤ HV ≤ 40KV,频率f 30Hz≤ f ≤ 300Hz
6、手持终端锂电池:7800mAh锂电池
7、充电器:DC12.6V 3000mA
8、显示方式:7寸800*480彩色液晶显示屏
9、操作方式:工业级电容触摸屏
10、手持终端尺寸(mm)270(L)×160(W)×65(H)
11、测试主机尺寸(mm)300(L)×300(W)×600(H)
12、存储器大小200组,支持U盘数据存储
13、重量(手持终端)1.5Kg
14、重量(测试主机)23Kg
供配电系统中,电缆的绝缘老化尤其突出。水树是在绝缘中存在水分、电应力和某些诱发因素,如杂质、突起、空间电荷或离子时发展成的一些微通道,在交流电场和水分的作用下,水树是聚合物绝缘材料发生降解的一种现象,在潮气和电场的共同作用下,水树是诱发高压电力电缆破坏的主要原因。
针对水树等绝缘老化问题,目前国外所报导的检测方法主要以谐振电压下的介质损耗测量为主,也有研究者进行了超低频(0.1hz)电压下的介质损耗测量,但其在中压电缆的应用较多,例如,我国为6-35kv,国外为22kv的电缆。对于高压(110kv)电缆系统,谐振耐压和介损测量所需要的设备体积庞大,现场试验接线时间过长,技术复杂,测试难度大,难以实现大规模的电缆绝缘测试。而过去对于水树诊断也有很多方法报导:如交流叠加法、3次谐波法、直流成分法等,这些方法大多用于中压电缆,如用于高压电缆,则在技术上仍存在一定困难;此外,这些传统的方法很少有对实际运行电缆的现场检测数据报导,缺乏工业现场的实际使用经验。因此,对于110kv高压电缆的绝缘老化诊断评估技术,在国内外的研究报导很少。
技术实现要素:
本发明提供一种高压电缆绝缘老化测试电路,用以解决现有技术对于高压电缆系统,谐振耐压和介损测量所需要的设备体积庞大,现场试验接线时间过长,技术复杂,测试难度大,难以实现大规模的电缆绝缘测试的技术问题。
为解决上述问题,本发明采用如下技术方案实现:
一种高压电缆绝缘老化测试电路,包括:保护电阻、直流电源、示波器、电子开关、以及计算机,所述示波器包括第一示波器和第二示波器;
保护电阻一端与直流电源正极连接,保护电阻另一端与电子开关第一端子连接,电子开关第二端子与第一示波器信号端连接,第一示波器信号地端与直流电源负极连接,电子开关公共端与被测电缆线芯连接,被测电缆绝缘层与第二示波器信号端连接,第二示波器信号地端与直流电源负极连接;
第一示波器和第二示波器通过数据线与计算机连接。
优选地,所述示波器采用型号为(泰克示波器mso2024b)的示波器,该示波器能够同时记录5~10mhz以及20~800hz电流波形。
优选地,所述保护电阻的阻值为10kω~20kω。
优选地,所述直流电源为负极性直流电源,该电源最大输出电压为20kv。
输入LC并联谐振电路的信号频率是很广泛的,其中含有频率为谐振频率的信号。在众多频率的输入信号中,电路只对频率为谐振频率的信号发生谐振,这时电路的阻抗最犬。谐振电路有一个频带宽度。在电路分析中,可以认为频带内的信号都与谐振频率的信号一样,被同样地放大或处理;但对频率偏离谐振频率的信号,掌握的。频带的宽度与Q值大小有关,Q值大,则认为没有受到放大或处理,这是电路分析要频带窄;Q值小,频带宽。
在含有电容和电感的电路中,如果电容和电感并联,可能出现在某个很小的时间段内:电容的电压逐渐升高,而电流却逐渐减少;与此同时电感的电流却逐渐增加,电感的电压却逐渐降低。
在含有电容和电感的电路中,如果电容和电感并联,可能出现在某个很小的时间段内:电容的电压逐渐升高,而电流却逐渐减少;与此同时电感的电流却逐渐增加,电感的电压却逐渐降低。而在另一个很小的时间段内:电容的电压逐渐降低,而电流却逐渐增加;与此同时电感的电流却逐渐减少,电感的电压却逐渐升高。电压的增加可以达到一个正的最大值,电压的降低也可达到一个负的最大值,同样电流的方向在这个过程中也会发生正负方向的变化,此时我们称为电路发生电的振荡。
电容和电感并联,电容器放电,电感开始有有一个逆向的反冲电流,电感充电;当电感的电压达到最大时,电容放电完毕,之后电感开始放电,电容开始充电,这样的往复运作,称为谐振。而在此过程中电感由于不断的充放电,于是就产生了电磁波。
电路振荡现象可能逐渐消失,也可能持续不变地维持着。当震荡持续维持时,我们称之为等幅振荡,也称为谐振。
谐振时间电容或电感两锻电压变化一个周期的时间称为谐振周期,谐振周期的倒数称为谐振频率。所谓谐振频率就是这样定义的。它与电容C和电感L的参数有关,即:f=1/√LC。L是电感,C是电容。
1.谐振电容器采用金属化薄膜无感式卷绕,特殊喷金工艺,迈拉胶带封装,阻燃环氧树脂密封,铜螺母或插片引出,或者是铜螺柱引出。
2.其特点是:稳定性高,频率特性好,体积小,损耗小,电感小,自愈性好,过电流能力强。
3.广泛用于电力电子设备,工业电磁加热设备,逆变焊机,逆变电源等电路中谐振用。
谐振电容器用途
在交流高电压电路中,谐振电容器(电容)与电抗器(电感)匹配,构成串联或并联谐振回路。
利用谐振时,频率或电流的变化,以供科研或试验装置使用。如交流谐振电压器
对某些特定频率的交流电压构成低阻抗通道或高阻抗通道。
谐振即物理的简谐振动,物体的加速度在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动。其动力学方程式是F=-kx。 谐振的现象是电流增大和电压减小,越接近谐振中心,电流表电压表功率表转动变化快,但是和短路的区别是不会出现零序量。
开关电源的损耗主要来自于开关管的开关过程,由于开关管不是理想的开关器件,开关过程不是瞬间完成的,存在一定的过渡时间,传统的方波开关电源在这个过渡转换的时间里电压和电流均为零,存在重叠的区域,因而会产生开关的损耗,随着频率的升高,这种损耗会逐渐加大而限制开关电源频率的提高,同时由于在转换过程中电压和电流短时间内的急剧变化,也会产生很大的开关噪声,形成电磁干扰EMT。为克服方波开关电源的这一缺点,二十多年来人们一直致力于低功耗的软开关电源技术的探索,在电路中加入小电感或电容元件,利用谐振的原理,使开关两端的电压或电流的变化呈正弦波的变化规律,基本的设想是想办法使开关管能在电压过零或电流过零的时候完成开关转换,以消除电压和电流的重叠,现实消除或减小功耗的目的。
谐振电源的开关损耗能够降低,但电路相对复杂。在反激式开关电源中广泛应用的是准谐振的模式。所谓反激式是指原边主功率开关与副边整流管的开关状态相反,开关管导通时,副边的整流二极管截止,反激式变换器只是在原边开关管导通时储存能量,当它截止时才向负载释放能量,故高频变压器在开关过程中,既起变压隔离作用,又是电感储能元件。反激式开关电源因电路简洁,容易实现多路输出而在彩电中得到广泛应用。不同于谐振开关电源谐振过程主动参与整个能量变化的过程,准谐振模式只在整个电源能量变换的一个阶段一开关转换的时候完成(波形仍接近为方波),通过谐振使开关管在零电压(或最小电压)或者是零电流的时刻完成开关转换,同时又保持方波开关电源的高能量传输模式,因此称为准谐振。
上一篇:35kV电缆介损试验系统
下一篇:35kV电缆损耗介质试验系统
快速跳转