首页 > 新闻中心 > 电力技术<

电力技术
10kV电缆介损试验仪
时间:2023-11-29

中试控股技术研究院鲁工为您讲解10kV电缆介损试验仪

ZSDJS-9510电缆介损测试仪

电缆介损试验相关标准

DL/T 1694.6-2020 高压测试仪器及设备校准规范 第6部分:电力电缆介质损耗测试仪
GB/T 3048.11-2007 电线电缆电性能试验方法 第11部分:介质损耗角正切试验
GB/T 3334-1999 电缆纸介质损耗角正切(tgδ)试验方法(电桥法)
GB/T 5654-2007 液体绝缘材料 相对电容率、介质损耗因数和直流电阻率的测量
GOST 12179-1976 电缆和导线介质损失角正切测定法

简易读懂:电缆介损测试仪是做什么?

ZSDJS-9510电缆介损测试仪针对大容量和高电压容性设备,如高压电缆(介损tgδ:无限制,电流I20uA  I  15A,电压HV1KV  HV  40KV,频率 f30Hz f  300Hz),高压电机,高压套管的出厂试验等,在采用外部大功率试验变压器或串联谐振等外部加压设备加压的环境下,进行介损测试。仪器分为手持终端和测试主机两部分。手持终端与测试主机之间采用2.4G无线通讯方式。可做正接法测试和反接法测试,正接法和反接法的电流测量量程均可达到2uA-15A的超宽范围。外施高压不同频率可自适应测量,范围可达30Hz-300Hz

中试控股始于1986  30多年专业制造  国家电网.南方电网.内蒙电网.入围合格供应商

ZSDJS-9510高压电缆介损测试仪主要针对大容量和高电压容性设备,如高压电机,高压套管的出厂试验,高压电缆等,在采用外部大功率试验变压器或串联谐振等外部加压设备加压的环境下,进行介损测试。仪器分为手持终端和测试主机两部分。手持终端与测试主机之间采用2.4G无线通讯方式。可做正接法测试和反接法测试,正接法和反接法的电流测量量程均可达到2uA-15A的超宽范围。外施高压不同频率可自适应测量,范围可达30Hz-300Hz

特点:
17寸彩色液晶显示工业级电容屏:仪器采用高端电容式触摸7寸彩色液晶显示屏,超大显示界面所有操作步骤中文菜单显示,每一步都清晰明了。
2、超宽电流量程:正接法和反接法电流测量量程都可以达到20uA-15A的超宽范围,更大电流可定制。
3、超宽频率范围:外施高压频率可达30Hz-300Hz的超宽范围,自适应测量。
4、各种高电压可定制:外施高压电压能够满足各种高电压环境,可根据用户需求定制。
5、光纤高压通讯:测试主机高压采样与低压采样之间采用工业级光纤通讯模块,在兼顾高低压之间绝缘性能的同时又能最大程度保障测试数据的精度。
6、独立手持操作终端:手持终端与测试主机完全隔离采用2.4G无线通讯,整个测试过程中用户只需在手持终端上操作即可,最大程度保障操作人员的人身安全。
7、锂电池供电:手持终端、测试主机低压端、测试主机高压端,都采用锂电池供电,充满电可连续工作8小时以上。
8U盘存储:本机存储的数据可以通过USB接口保存至U盘中。
参数:
1、使用条件:-15℃∽40 RH80%
2、标准电容:tgδ: <0.005%Cn: 99.78PF
耐压电压: 40KV
3、分辨率:介损tgδ: 0.001%,电容量Cx: 0.001pF,频率f0.001Hz
4、精度:介损△tgδ:±(读数*1.0%+0.040%),电容量△C x :±(读数*1.0%+1.00PF),频率 f:±(读数*1.0%+0.10Hz)
5、测量范围:介损tgδ无限制,电流I 20uA  I  15A,电压HV 1KV  HV  40KV,频率f 30Hz f  300Hz
6、手持终端锂电池:7800mAh锂电池
7、充电器:DC12.6V    3000mA
8、显示方式:7800*480彩色液晶显示屏
9、操作方式:工业级电容触摸屏
10、手持终端尺寸(mm)270(L)×160(W)×65(H)
11、测试主机尺寸(mm)300(L)×300(W)×600(H)
12、存储器大小200组,支持U盘数据存储
13、重量(手持终端)1.5Kg
14、重量(测试主机)23Kg

参考文献


交联聚乙烯电缆的介质损耗介绍

现象:电介质在外电场作用下,由于介质电导和介质极化的滞后效应,其内部会有发热现象,这说明有部分电能已转化为热能耗散掉,电缆绝缘介质(XLPE)也不例外。

定义:电介质在电场作用下,在单位时间内因发热而消耗的能量称为电介质的损耗功率,即介质损耗(diclectric loss),简称为介损。

作用:介质损耗的大小是衡量绝缘介质电性能的一个重要指标。介质损耗不但消耗了电能,而且使绝缘发热引发热老化。如果介电损耗较大,甚至会引起介质的过热而绝缘破坏,所以从这种意义上讲,介质损耗越小越好。

形成机理:按照电介质的物理性质通常有三种电介质损耗形式。

1)漏导损耗:实际使用中的绝缘材料都不是完善的理想的电介质,在外电场的作用下,总有一些带电粒子会发生移动而引起微弱的电流,这种微小电流称为漏导电流,漏导电流流经介质时使介质发热而损耗了电能。这种因电导而引起的介质损耗称为“漏导损耗”。

对于XLPE电缆,在直流及交流电压下都存在漏导损耗,通常直流电压用泄漏电流的大小或绝缘电阻的大小来反映介质的这一损耗情况。

2)极化损耗:在介质发生缓慢极化时(松弛极化、空间电荷极化等),带电粒子在电场力的影响下因克服热运动而引起的能量损耗。

对于XLPE电缆,只有在交流电压下才存在极化损耗,而且随着交流频率的增大,极化损耗通常也增大。

3)局部放电损耗:通常在固态电介质中由于存在气隙或油隙,当外施电压达到一定数值时,气隙或油隙先放电而产生损耗,这一损耗在交流电压下要比直流电压时大的多。

对于XLPE电缆,在直流电压下,可用泄漏电流的大小来反映电介质的损耗,而在交流电压下,介质损耗不能单用泄漏电流来表示,通常用介质损耗正切来表示,即在一定的交流电压下,电缆绝缘所表现出的等效电阻Rg的大小值。

由于交联聚乙烯电力电缆不推直流耐压试验,交流耐压试验仅能反映电缆的电介质击穿特性,不能反映电缆的损耗特性,因此有必要对电力电缆进行介损测量。




1.弛豫损耗
交变电场E 改变其大小和方向时,电介质极化的大小和方向也随着改变。如电介质为极性分子组成(极性电介质)或含有弱束缚离子(这类偶极子和离子极化由于热运动造成,分别称为偶极子和热离子),转向或位移极化需要一定时间(弛豫时间),电介质极化与电场就产生了相位差,由这种相位差而产生了电介质弛豫损耗。如组成电介质的极性分子和热离子的弛豫时间r比交变电场的周期T大得多,这些粒子就来不及建立极化,电介质弛豫极化就很小。在低频电场下,粒子的弛豫时间比T小得多,但由于单位时间改变方向的次数很少,电介质的弛豫损耗也很小。
弛豫极化过程在含有极性分子和弱束缚离子的液体和固体电介质中产生。对于含有极性基团的高分子聚合物,极性基团或一定长度分子链亦可产生转向极化形式的弛豫极化。液体所将性电介质的弛豫损耗与黏度有关,对于极低黏度的水、酒精等极性电介质,弛豫损耗出现在厘米波段:弛豫损耗与温度、电场频率有关。
2.共振损耗
对于电子弹性位移极化和离子弹性位移极化,电介质可以看成是许多振子的集合,这些振子在电场作用下作受迫振动,并终以热能方式损耗。当电场频率比振子频率高得多或低得多时.损失能量很少。只有当电场频率等于振子固有频率(共振)时,损失能量较大,故称电介质共振损耗。电子弹性位移极化,约在紫外频率波段,而离子位移极化,约在红外频率波段。
3.电导损耗
实际电介质均具有一定电导,由于贯穿电导电流引起的电介质损耗(焦耳损耗)称为电介质电导损耗,一般情况下很小,但当表面电导的急剧增大时,这一损耗往往也急剧增加。它与电场频率无关。
4.局部放电损耗
常用的固体绝缘中往往不可避免地含有某些气隙或油隙,它的绝缘温度远低于固体绝缘材料。在电场的作用下,气隙中原先发生局部击穿(电晕放电)。而放电所形成的电荷,在外施电场E0作用下移动到气隙壁上,形成反电场E,此反电场在直流电场下恰好削弱了气隙中的电场,很可能放电不再继续下去。若外加是交变电压,经半周期后,外加电压E0反向,正好与前半周气隙中电荷形成的反电场E同方向,串联介质中的电场分布与介电系数成反比,所以交流电压下电介质的局部放电及损耗较直流电压下强烈。

因此,当谐振回路的品质因数Q 值很高时,谐振电压也可以升得很高,理想的情况是Q 值无限高(即天线没有损耗),则产生谐振电压的幅度也会升得无限高,但这种情况是不存在的。

LC 串联回路产生谐振时的电压幅度与激励波形的相位密切相关,而与激励波形的幅度反而相关不是特别大。另外还需指出,测试用的接收天线还分电场感应电线和磁场感应天线,还有电磁场感应天线。

实际应用中天线是不具体区分接收天线和发射天线的,两者都可以同用一根天线。因此,电路中任何带电的导体或有电流流过的导体都可以看成是发射天线。

电子设备产生辐射干扰的大小除了干扰信号幅度之外,还与感应电容C1C2 的大小有关,即:与电场辐射的面积有关(电容与面积大小成正比),与磁场辐射的面积也有关,因此,尽量减小干扰信号的辐射面积是一种降低辐射干扰的好办法。

大容量、高电压 GIS 耐压试验通常采用变频电压谐振的方法 ,通过调频变频使回路中发生电压谐振,使电压试验达到试验值。瀑布沟电站500KV GIS 室由6 条进线和 6条出线组成,采用串联谐振装直进行试验。谐振频率f=51.5 Hz ,最高耐受电流I=8.4A。只有GIS 的每一部件均已按选定的完整试验程序试验,电压元击穿放电,才认为整个 GIS 通过试验。

GIS 设备是 70 年代初期出现的一种先进的高压配电装置,英文名称为Gas-Insulated Switchgear (气体绝缘全封闭组合电气)简称GIS

GIS 是以SF6气体作为绝缘介质,利用SF6极好的绝缘性能和灭弧性能,把断路器 、隔离开关、接地开关、TV TA 、避雷器 、母线、进出线套管 、电缆终端等元 件密闭组合在一起,所以称为“气体绝缘全封闭组合电气”。与传统敞开式配电装置相比,GIS 具有占地面积小、元件全部密封不受环境干扰、运行可靠性高而方便、检修周期长、维护工作量小、安装迅速、运行费用低、无电磁干扰等优点

在运输过程中由于机械振动、撞击等原因可能导致设备的元件或紧固件松动、位移。设备现场安装时,由于安装人员的粗心,造成连接电极表面处理不彻底,有划伤、毛刺或安装电极不到位;接口法兰面未按要求处理清洁,有杂质、灰尘或细小颗粒进人内部等情况有可能发生。为了防止这些意外因素造成内部事故,在设备安装完成后,需在现场对GIS进行绝缘检查和交流耐压试验。

1试验方法的选择

交流耐压试验通常有三种方法 :(1)利用工频高压 试验变压器进行试验;(2)采用电抗器并联补偿进行试 验;(3)采用串联谐振装置进行试验 。对于大型 GIS设备,由于前两种试验方法需要使用试验变压器进行,其容量相当大(50500 kVA),加之需同等容量的调压设备,整套设备将相当笨重,不便搬运,不利于现场试验。所以大容量 、高电压的GIS耐压试验通常采用变频电压谐振的方法,通过调节变频电源输出频率使回路中发生电压谐振,再调节变频电源输出电压使试验电压达到试验值。试验频率可在一定范围内调节,品质因数高,无“试验死区”,而且试验设备保护功能完善,可以有效地保护试品。

2串联变频谐振试验

2.1原理     

串联谐振装置的工作原理图

串联谐振装置的工作原理图如图 1、图2

串联谐振工作原理计算公式

UC=qU ,即被试品上获得的电压为励磁电压的q倍。也就是说,利用额定电压较低的试验变压器,可以得到较高的输出电压。

 

 

 

 

 

 

 

 

销售热线

  • 400-046-1993全国统一服务热线
  • 销售热线:027-83621138
  • 售后专线:027-83982728
  • 在线QQ咨询: 149650365      
  • 联系我们

 

增值服务

  • 三年质保,一年包换,三个月试用

 

 

 

 


 

版权所有:湖北中试高测电气控股有限公司 1999 鄂TCP备9912007755号