首页 > 新闻中心 > 电力技术<

电力技术
变压器油色谱分析仪
时间:2022-09-12

中试控股技术研究院鲁工为您讲解:变压器油色谱分析仪

中试控股  造中国制造的优质品牌

30多年专业制造:ZSSP-9900色谱分析

ZSSP-9900变压器油气相色谱仪用于电力系统绝缘油中溶解气体组份含量的测定,一次进样即可完成绝缘油中溶解的7种或者9种气体组分含量的全分析
检测:H2、CO、CO2、CH4、C2H4、C2H6、C2H2等(国家规定的七组分溶解气体)
ZSSP-9900变压器油气相色谱仪是用色谱法测定变压器油中溶解气体的组分含量,是发供电企业判断运行中的充油电力设备是否存在潜伏性的过热、放电等故障,以保障电网安全有效运行的有效手段。

经中科院湖北计量中心检索,ZSSP-9900变压器油气相色谱仪的综合技术处于国内领先,并达到高水平,优于国家标准。该产品荣获高科技成果转化,并荣获重点新产品称号,优良产品的技术性和良好的市场前景。


解读新国标:GB50325-2020
2020年1月16日经中华人民共和国住房城乡建设部批准发布,GB 50325-2020《民用建筑工程室内环境污染控制标准》于2020年8月1日起正实施,旧标准GB50325-2010同时废止。

下面中试控股详细讲解全新的色谱技术:ZSSP-9900变压器油气相色谱仪


ZSSP-9900变压器油气相色谱仪






ZSSP-9900色谱分析介绍
  绝缘油是变压器中必不可少的绝缘材料,也是变压器绕组和铁芯的冷却油。变压器油中含有一氧化碳、二氧化碳、甲烷、乙烷、乙炔、乙烯、氢气等气体,当绝缘油中的总含气量小于3%(V/V)时,绝缘油的品质最佳,能够起到很好的绝缘效果。但是如果绝缘油中的总含气量过高,就会大幅度降低绝缘油的绝缘强度。而且绝缘油中的气泡在经过高电场区域的时候可能引起局部放电,产生二次气泡,危害整个绝缘线路,并且会加速绝缘油的老化程度,造成变压器故障甚至损坏。
  因此,国家出台了DL/T 703-1999《绝缘油中含气量的气相色谱测定法》、GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》、电力行业标准DL/T 722-2000《变压器油中溶解气体分析和判断导则》、GB/T7252-2001《变压器油中溶解气体分析和判断导则》等多个绝缘油含气量的相关检测标准,绝缘油中的含气量成为电力行业必定检测的一项指标。
  对此,中试控股面向绝缘油生产企业和充油电器设备厂家推出的变压器绝缘油专用气相色谱仪,配置双FID检测器,TCD检测器,镍转化炉,填充柱进样器,三路绝缘油专用色谱柱等,对绝缘油中的一氧化碳、二氧化碳、甲烷、乙烷、乙炔、乙烯、氢气7种气体一次进样即可得出分析结果,是绝缘油生产企业和充油电器设备厂家必不可少的检测仪器。

ZSSP-9900色谱分析相关标准
DL/T 703-2015《绝缘油中含气量的气相色谱测定法》
GB/T 17623-2017《绝缘油中溶解气体组分含量的气相色谱测定法》
DL/T 722-2014《变压器油中溶解气体分析和判断导则》
GB/T 7252-2001《变压器油中溶解气体分析和判断导则》

ZSSP-9900色谱分析特点
1、绝缘用专用气相色谱仪配置方案,配置双FID检测器,TCD检测器,镍转化炉,填充柱进样器,三路绝缘油专用色谱柱,对绝缘油中的一氧化碳、二氧化碳、甲烷、乙烷、乙炔、乙烯、氢气7种气体一次进样即可得出分析结果。
2、全新生产工艺,重新设计仪器内的气源通路和内部结构,零部件布局更加合理,降低元器件信号干扰,提高检测准确度,设备的稳定性和耐用度极佳。
3、采用7寸彩色触摸屏控制,专业色谱仪UI操作界面设计,直观反映进样口、柱温箱、检测器的内部温度值和个检测器的数值,以及运行时间,具备一键降温功能,用户可以自行设定检测条件,使用及其方便。
4、仪器具备优良的重复性,采用自动进样器进样的实验条件下,仪器测试的重复性误差可达2%,优于国标规定的3%。
5、柱温箱采用六路独立温控系统,自动后开门系统,21阶21平台程序升温,升/降温速度快,温控精度达到0.1℃,使设备能胜任大范围的样品分析。
6、可以直接与计算机进行联机,通过PC端网络版色谱工作站软件对仪器进行操作(最大支持253台),实现程序控制仪器进样口,柱温箱,检测器的升温和降温。在客户配置有自动进样阀(或者自动进样器)的条件下可以实现仪器无人值守,仪器自动升温点火,自动加载方法,自动计算测试结果等一些列的测试流程,满足在线测试的要求。
7、独家物联网色谱仪技术,内置IP协议栈,可通过企业局域网或互联网将测试数据上传至传至现场实验室、部门主管及上级领导的计算机中,方便各个部门实时监控仪器的运行及检测结果。可以通过互联网直接与厂家进行对接,实现气相色谱仪的远程诊断,远程程序更新等。

ZSSP-9900色谱分析参数
测试结果重复:性误差≤2%
通讯接口:配置标准网络接口输出(6类网线连接),支持RS-232输出(选配)
主机尺寸:510×500×540mm
电源:AC220V±10%  50Hz   2200W
环境温度:5~35℃,相对湿度:≤85%,室内无腐蚀性气体,工作台平稳无振动,周围无强磁场存在
柱温箱炉膛尺寸:280×300×180mm
温度范围:室温+5~400℃
温度设定:1˚C;程序设定升温速率0.1˚C
色谱柱温度稳定性:当环境温度变化1˚C时,为0.01˚C
程升阶数:21阶21平台
程升速率:0.1℃-40℃/min(增量0.1℃)
氢火焰离子化:检测器(FID)
最大操控温度:400℃
检测限:≤5×10-12g/s   [n-C16]
漂移:≤5×10-13A/30min
噪音:≤2×10-13A
动态线性范围:≥107
热导池检测器:(TCD)
最大操控温度:400℃
灵敏度:≥12000mv.ml/mg   [苯/甲苯]
漂移:≤30uV/30mi
噪音:≤8uV
动态线性范围:≥104
色谱工作站软件:PC端网络版色谱工作站软件对仪器进行操作(最大支持253台),实现程序控制仪器进样口,柱温箱,检测器的升温和降温。在客户配置有自动进样阀(或者自动进样器)的条件下可以实现仪器无人值守,仪器自动升温点火,自动加载方法,自动计算测试结果等一些列的测试流程

ZSSP-9900变压器油气相色谱仪的全新技术



ZSSP-9900变压器油气相色谱仪客户实际应用(节选部分)










ZSSP-9900变压器油气相色谱仪气相色谱分析技术是一种多组分混合物的分离、分析技术。它主要利用样品中各组份的沸点、极性及吸附系数在色谱柱中的差异,使各组份在色谱柱中得到分离,并对分离的各组分进行定性、定量分析。


FID点火后不能调零的原因
氢火焰离子化检测器(FID)在点火前可以将基线调到零点,但点火后却不能将基线调到点火前的位置,这种现象即为点火不能调零故障。点火后不能调零故障的原因有:离子室积水;极化电压接反;气路、检测器污染;柱流失严重;气流调节不当;基线补偿无作用。
此种故障的排除可按下面步骤进行检查排除:
(1)基线补偿旋钮作用检查:记下点火后基线偏离的方向,从离子室一侧取下氢焰信号电缆。此时旋动基线补偿钮后可观察基线补偿偏转方向及大小,正常时基线补偿方向应与信号偏离方向相反,若基线补偿方向与信号偏离方向同向,可考虑改变极化电压极性。若调基线补偿旋钮后基线无反应、或虽有反应但偏离数值太小,亦应转入(9)处理。
(2)检测器温度检查:氢焰点火时,离子室的温度必须超过100℃,否则离子室将会累积水分,破坏收集极的绝缘,导致放大器不能调零。还有一点须注意,即在刚启动色谱仪后,虽然检测器指示已达100℃以上,但离子室距离中心加热体有一段长度,因此需多等一段时间待离子室真实温度达到100℃以上,再去点火。
(3)火焰是否太大:直接观察点火后的氢火焰是否太大、太红,火焰是否已烧到收集板上,若是这样按(4)处理。
(4)气流调节:调节各气路流量,使火焰变小,必要时设定最佳气流比。如果用氧气代替空气,需注意适当加大氮气尾吹的流量,以不灭为上限。调好气路流量比例后观察氢火焰,应以一个微发蓝光或无光的小火焰为宜。
(5)降低柱温后基线可否调零试验:将色谱柱温度降到室温,观察基线能否调零,如果能够调零,说明柱流失严重。
(6)柱流失严重的处理:在柱流失严重的情况下,应首先注意此柱是否进行过老化处理,如柱子已经老化,但基线仍不能调零,需考虑改变操作条件或更换新柱。
(7)气路、检测器玷污严重:严重的气路及检测器玷污,从氢火焰的颜色发红、发黄即可看出,彻底的处理办法是清洗气路和检测器。气路的污染还有一个重要的原因,就是气源纯度不够,从更换新的过滤、净化器后,基线能重新调零这一点可得到证实。
(8)离子室积水处理:熄灭氢火焰,并升高离子室温度,待1小时后应能使离子室积水烘干,烘干后再行正常点火操作。
(9)极化电压接反或基线补偿电路故障处理:在证实极化电压极性接反后,可通过转动极化电压极性开关或重接极化电压引线插头的方法将极性颠倒过来;在基线补偿电路无作用或作用太小时,需检查基线补偿电位器是否脱焊、滑动头等是否失灵、基线补偿电压值是否正确以及基线补偿电路中有否开路和短路现象。

 

 

 

 

 

 

 

 

销售热线

  • 400-046-1993全国统一服务热线
  • 销售热线:027-83621138
  • 售后专线:027-83982728
  • 在线QQ咨询: 149650365      
  • 联系我们

 

增值服务

  • 三年质保,一年包换,三个月试用

 

 

 

 


 

版权所有:湖北中试高测电气控股有限公司 鄂TCP备12007755号